

Parallelogram

https://www.geogebra.org/m/VCUCx4ih

Parallelogram

4) KeyConcept Area of a Parallelogram

Words
The area A of a parallelogram is the product of a base b and its corresponding height h.

Symbols $\quad A=b h$

Parallelogram

4) KeyConcept Area of a Parallelogram

Words
The area A of a parallelogram is the product of a base b and its corresponding height h.

Symbols $\quad A=b h$

Parallelogram

Find the perimeter and area of $\square A B C D$.

Find the perimeter and area of each parallelogram.

1B.

Find the area of $\square E F G H$.

Find the area of each parallelogram. Round to the nearest tenth if necessary.

2A.

Triangles

Triangles

KeyConcept Area of a Triangle

Words \quad The area A of a triangle is one half the product of a base b and its corresponding height h.

Symbols

$$
A=\frac{1}{2} b h \text { or } A=\frac{b h}{2}
$$

Find the perimeter and area of each triangle.

3B.

4A. $A=148 \mathrm{~m}^{2}$

4B. $A=357 \mathrm{in}^{2}$

4C. ALGEBRA The base of a parallelogram is twice its height. If the area of the parallelogram is 72 square feet, find its base and height.

Trapezoid

Trapezoid

5 KeyConcept Area of a Trapezoid

Words \quad The area A of a trapezoid is one half the product of the height h and the sum of its bases, b_{1} and b_{2}.
Symbols $\quad A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

Find the area of each trapezoid

24 mm

Rhombus and Kite

KeyConcept Area of a Rhombus or Kite

Words
The area A of a rhombus or kite is one half the product of the lengths of its diagonals, d_{1} and d_{2}.

Symbols

$$
A=\frac{1}{2} d_{1} d_{2}
$$

Find the area of each rhombus or kite.
a. $\mid \longleftarrow 8 \mathrm{~m} \longrightarrow$

b.

Solving for unknowns

ALGEBRA One diagonal of a rhombus is twice as long as the other diagonal. If the area of the rhombus is 169 square millimeters, what are the lengths of the diagonals?

ALGEBRA Find x.

4A. $A=92$ in 2

4B. $A=177 \mathrm{~cm}^{2}$

ConceptSummary Areas of Polygons

Parallelogram Triangles

5 KeyConcept Area of a Circle

Words	The area A of a circle is equal to π times the square of the radius r.
Symbols	$A=\pi r^{2}$

CONSTRUCTION Find the area of each circle. Round to the nearest tenth.
1.

Finding missing measures

ALGEBRA Find the radius of a circle with an area of 95 square centimeters.

ALGEBRA The area of a circle is 196π square yards. Find the diameter.

Find the area of each shaded region.

Find the area of each shaded region.

Area of sectors

KeyConcept Area of a Sector

The ratio of the area A of a sector to the area of the whole circle, πr^{2}, is equal to the ratio of the degree measure of the intercepted arc x to 360 .

Proportion: $\frac{A}{\pi r^{2}}=\frac{x}{360}$
Equation: $A=\frac{x}{360} \cdot \pi r^{2}$

PIZZA A circular pizza has a diameter of 12 inches and is cut into 8 congruent slices. What is the area of one slice to the nearest hundredth?

Find the area of the shaded sector. Round to the nearest tenth.

3A.

3B.

$3 C$.

ART Kang created the stained glass window shown. The window is a regular octagon with a side length of 15 inches and an apothem of 18.1 inches. What is the area covered by the window?

Parts of a polygon

Area of a regular polygon

5 KeyConcept Area of a Regular Polygon

Words

Symbols

The area A of a regular n-gon with side length s is one half the product of the apothem a and perimeter P.

$$
A=\frac{1}{2} a(n s) \text { or } A=\frac{1}{2} a P .
$$

HOT TUBS The cover of the hot tub shown is a regular pentagon. If the side length is 2.5 feet and the apothem is 1.7 feet, find the area of the lid to the nearest tenth.

Find the area of each regular polygon. Round to the nearest tenth.
a. regular hexagon

b. regular pentagon

Area of composite figures

MINIATURE GOLF The dimensions of a putting green at a miniature golf course are shown. How many square feet of carpet are needed to cover this green?

Find the area of each figure. Round to the nearest tenth if necessary.

Find the area of the figure. Round to the nearest tenth if necessary.

5A. $\quad 5 \mathrm{~m} \quad 2 \mathrm{~m} \quad 5 \mathrm{~m}$ $\frac{6 \mathrm{~m} \sqrt{6 \mathrm{~m}}}{8 \mathrm{~m}}$ (1m

5B.

Similar figures

- Two figures are similar when their corresponding sides are proportional \rightarrow the ratio is called the scale factor.
- The perimeter of these figures is also proportional.

Area of Similar figures

The areas of similar figures are proportional to the square of the scale factor.

Theorem 11.1 Areas of Similar Polygons

Words If two polygons are similar, then their areas are proportional to the square of the scale factor between them.

Example If $A B C D \sim F G H J$, then

$$
\frac{\text { area of } F G H J}{\text { area of } A B C D}=\left(\frac{F G}{A B}\right)^{2} \text {. }
$$

Finding the area from length measures.

If $\triangle J K L \sim \triangle P Q R$ and the area of $\triangle J K L$ is 30 square inches, find the area of $\triangle P Q R$.

For each pair of similar figures, find the area of the green figure.

1A.

$$
A=32 \mathrm{~cm}^{2}
$$

1B.

$$
A=13.5 \mathrm{ft}^{2}
$$

Finding lengths from areas.

The area of $\square A B C D$ is 150 square meters. The area of $\square F G H J$ is 54 square meters. If $\square A B C D \sim \square F G H J$, find the scale factor of $\square F G H J$ to $\square A B C D$ and the value of x.

For each pair of similar figures, use the given areas to find the scale factor of the blue to the green figure. Then find x.

2A.

$A=50 \mathrm{in}^{2}$

$A=72 \mathrm{in}^{2}$

2B.

