CHAPTER 11: AREAS OF POLYGONS AND CIRCLES

11.1 – AREAS OF PARALLELOGRAMS AND TRIANGLES

Parallelogram

https://www.geogebra.org/m/VCUCx4jh

3

Parallelogram

KeyConcept Area of a Parallelogram

Words The area A of a parallelogram is the product of a base b and its corresponding height h.

Symbols

A = bh

Find the perimeter and area of each parallelogram.

Find the area of each parallelogram. Round to the nearest tenth if necessary.

KeyConcept Area of a Triangle

Words The area A of a triangle is one half the product of a base b and its corresponding height h.

$$A = \frac{1}{2}bh$$
 or $A = \frac{bh}{2}$

8

Find the perimeter and area of each triangle.

b = 193B. 3A. 19 in. 27 in. રી.ર 13 cm h=30 30 in. 41 in. 6 cm 29 cm 132 b2+62 A=29×11-53 $A = bxh_{-} 19x30 = 285in^{2}$ 169= 62+36 $A = 167.19 cm^{2}$ 133 = b2 P=31.2+29 $(2 - 27 + 30^{2})$ 11.53 = b $2 = 29^{2} + 11.53^{2}$ +11.53 C2=1629 P=71.73m C=40-36 2 2974 P= 41+19+40.36=100-36in C=31-2

4C. ALGEBRA The base of a parallelogram is twice its height. If the area of the parallelogram is 72 square feet, find its base and height.

11.2 – AREAS OF TRAPEZOIDS, RHOMBI AND KITES

https://www.geogebra.org/m/T8ZfVMFK

KeyConcept Area of a Trapezoid

Words The area A of a trapezoid is one half the product of the height h and the sum of its bases, b_1 and b_2 .

Symbols

Find the area of each rhombus or kite. $A = \partial_1 \cdot \partial_2$ **a.** |**∢**__8 m ___►| $d_1 = 3$ $d_2 = 15$ 15 m $A = \frac{3.15}{2} = 60 \text{ m}^2$ $d_1 = 20ft$ $d_2 = 24ft$ b. $A = \frac{20.24}{2} = 2404t^2$ 10 ft 12 ft 16

Solving for unknowns

ALGEBRA One diagonal of a rhombus is twice as long as the other diagonal. If the area of the rhombus is 169 square millimeters, what are the lengths of the diagonals?

$$A = \frac{d_1 d_2}{2}$$

$$A = 169 \text{ mm}^2$$

$$I = \frac{d_1 d_2}{2}$$

$$I = \frac$$

 $C = 2\pi r = \pi d$

Solution KeyConcept Area of a Circle

WordsThe area A of a circle is equal to π timesthe square of the radius r.

Symbols

 $A = \pi r^2$

CONSTRUCTION Find the area of each circle. Round to the nearest tenth.

Finding missing measures

ALGEBRA Find the radius of a circle with an area of 95 square centimeters.

 $A = Tr^{2} - divide by T$ $95 = Tr^{2} - take the V$ $30.24 = r^{2} r = 5.5 \text{ cm}$

ALGEBRA The area of a circle is 196π square yards. Find the diameter,

A: πr^2 14=r 14=r 14=r 14=r 14=r 14=r 14= 28 yol 196 = r² 196 = r²

Find the area of each shaded region.

 $A = \overline{N}r^2$

Plan: Area of big circle - area of small
Area of big circle:

$$r=9; 2=45$$

A=TT (4.5)²= 63.62 cm²
Area of small circle:
 $r=4:5=2=2.25$ cm
A=TT (2.25)²= 15.9 cm²
54.54 - 15.9 = 47.72 cm²

24

Find the area of each shaded region.

radius of big circle= 12-2 = 6 in diameter of small circle= 12=3=4 in radius of small circle = 4= 2=2 in Area of big semicircle - area of one small semicirde. Big Circle, Actual shape; $A = \pi(6)^2 = 113.1 + 2 = 56.55 \text{ in }^2$ 56.55-6.29 = 50-26 in 2 Small semi circle; $A = \frac{tt(2)}{2} = 12.57 \div 2 = 6.29 \text{ in}^2$ 25

Area of sectors

KeyConcept Area of a Sector

The ratio of the **area** *A* of a sector to the **area of the whole circle**, πr^2 , is equal to the ratio of the **degree measure of the intercepted arc** *x* to 360.

Proportion:
$$\frac{A}{\pi r^2} = \frac{x}{360}$$

Equation: $A = \frac{x}{360} \cdot \pi r^2$

PIZZA A circular pizza has a diameter of 12 inches and is cut into <u>8 congruent</u> slices. What is the area of one slice to the nearest hundredth?

deldin r=Gin central angle = 360 ÷ 8 = 450 $\frac{A}{\pi(6)^2} = \frac{45}{360}$ $\frac{360A}{A} = \frac{45\pi(6)^2}{45\pi(6)^2}$ $A = 14 - 14 10^{2}$

Find the area of the shaded sector. Round to the nearest tenth.

11.4 – AREAS OF REGULAR POLYGONS AND COMPOSITE FIGURES

ART Kang created the stained glass window shown. The window is a regular octagon with a side length of 15 inches and an apothem of 18.1 inches. What is the area covered by the window?

D calculate the orea of 1 triangle. 2) Multiphy by 8.

Area of triangle

 $A = \frac{15 \times 18 - 1}{2} = 135 - 7 - 5 in^2$

Area of octaget 135.75 × 8= 1086 in2

Parts of a polygon

Area of a regular polygon

A: base theight, 5

S= side length - D triangle

oz apothen - » height de triangle n= # of side - » # of triangle

KeyConcept Area of a Regular Polygon

The area A of a regular *n*-gon with side Words length s is one half the product of the apothem a and perimeter P. $A = \frac{1}{2}a(ns) \text{ or } A = \frac{1}{2}aP. \quad \text{Are } A = \frac{1}{2}aP.$

He of triangly area of each triangle,

Symbols

Find the area of each figure. Round to the nearest tenth if necessary.

4B. 4A. 8 in. 22 cm 15 cm 12 in. 31 cm 5 in. $15^2 - 9^2 = h^2$ 15 in. 2_ 144 - 15+0.7 A= B+b.h Area 0 (Trapezeid) A= 31+22.12 2 318 cm2 Areal A= 80-5in2 A= lxw = 15 × 5 = 75 m2 $(6)^{2}$ 56.55 cm² 80.5+75=155.5in2 Toto 318- 56.55=372

14 ft 5B. 9 ft Parallelogram A= bxh A= 14×9=126 Gt2 Kite Tutal A= d, .dz 126-63 2. = 63 ft2 A=9 × 14 z 63

Similar figures

- Two figures are similar when their corresponding sides are proportional → the ratio is called the scale factor. The number you get when you divide the length of corresponding Sides in similar figures is also proportional.

Area of Similar figures

Finding the area from length measures.

For each pair of similar figures, find the area of the green figure.

Finding lengths from areas.

The area of $\square ABCD$ is 150 square meters. The area of $\square FGHJ$ is 54 square meters. If $\square ABCD \sim \square FGHJ$, find the scale factor of $\square FGHJ$ to $\square ABCD$ and the value of x.

$$\frac{2}{54} = \frac{9}{150}$$

$$k = \sqrt{\frac{9}{25}} = \frac{3}{5}$$

X = 6

$$\frac{3}{5} - \frac{10}{10}$$

5x = 3x10
5x = 30

For each pair of similar figures, use the given areas to find the scale factor of the blue to the green figure. Then find *x*.

