

Parallelogram

https://www.geogebra.org/m/VCUCx4ih

Parallelogram

4) KeyConcept Area of a Parallelogram

Words
The area A of a parallelogram is the product of a base b and its corresponding height h.

Symbols $\quad A=b h$

Find the perimeter and area of each parallelogram.

1 A .

$$
\begin{aligned}
& P=2 \times 21+2 \times 17=76 \mathrm{~cm} \\
& A=6 \times h \quad 28964 \\
& b=21 \quad 17^{2}=8^{2}+h^{2} \\
& h=25 \\
& A=21 \times 25 \quad 225=h^{2} \\
& A=315 \mathrm{~cm}^{2} 25=h
\end{aligned}
$$

1 B .

$$
\begin{array}{ll}
A=23 \times 24 & b=23 \\
A=552 \mathrm{ft}^{2} & h=24 \\
C^{2}=24^{2}+7^{2} & P=2.25+2.23 \\
c^{2}=625 & P=25 \\
C=25 & P=96 \mathrm{ft}
\end{array}
$$

Find the area of each parallelogram. Round to the nearest tenth if necessary.

iB.

30	60	90
x	$\sqrt{3 x}$	$2 x$
12	$12 \sqrt{3}$	

$b=32$
$h=12 \sqrt{3}$

$$
A=32 \cdot 12 \sqrt{3}
$$

$\left.\right|_{\substack{30 \\ \sqrt{3} x}} ^{\substack{60 \\ \frac{1}{3} \\ 2 x}} A=665.1 \mathrm{~m}^{2}$

Triangles

Triangles

KeyConcept Area of a Triangle

Words \quad The area A of a triangle is one half the product of a base b and its corresponding height h.
Symbols $\quad A=\frac{1}{2} b h$ or $A=\frac{b h}{2}$

Find the perimeter and area of each triangle.

BB.
(1)

4A. $A=148 \mathrm{~m}^{2} \quad A=b \times h$
AB. $A=357 \mathrm{in}^{2}$

$$
\frac{148}{8}=\frac{8 \cdot x}{8}
$$

$$
357=\frac{34 \cdot x}{2}
$$

$$
357=17 x
$$

$18.5 m=x$
$\operatorname{zlin}=x$
4C. ALGEBRA The base of a parallelogram is twice its height. If the area of the parallelogram is 72 square feet, find its base and height.

$$
\begin{aligned}
& A=b \cdot h \\
& 72=2 x \cdot x
\end{aligned}\left\{\begin{array}{l}
72=2 x^{2} \\
36=x^{2} \\
6 E t=x
\end{array}\right.
$$

Trapezoid

Trapezoid

5) KeyConcept Area of a Trapezoid

Words \quad The area A of a trapezoid is one half the product of the height h and the sum of its bases, b_{1} and b_{2}.

Symbols

$$
A=\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{b_{1}+b_{2}}{2} \cdot h
$$

Find the area of each trapezoid

$$
A=\frac{b_{1}+b_{2}}{2} \cdot h
$$

$$
\begin{aligned}
& b_{1}=16 \\
& b_{2}=6 \\
& h=12
\end{aligned} \quad A=\frac{16+6}{2} \cdot 12 .
$$

$$
\begin{aligned}
& b_{1}=24 \\
& b_{2}=18 \\
& h=13 \\
& A=\frac{24+18}{2} \cdot 13 \\
& A=273 \mathrm{~m}^{2} 14
\end{aligned}
$$

Rhombus and Kite

C5 KeyConcept Area of a Rhombus or Kite

Words
The area A of a rhombus or kite is one half the product of the lengths of its diagonals, d_{1} and d_{2}.

Symbols

$$
A=\frac{1}{2} d_{1} d_{2}=\frac{d_{1} \cdot d_{2}}{2}
$$

Find the area of each rhombus or kite.
a. \mid -

$$
\begin{aligned}
& d_{1}=8 \\
& d_{2}=15 \\
& A=\frac{8 \cdot 15}{2}=60 \mathrm{~m}^{2}
\end{aligned}
$$

b.

$$
\begin{aligned}
& d_{1}=20 \mathrm{ft} \\
& d_{2}=24 \mathrm{ft} \\
& A=\frac{20.24}{2}=240 \mathrm{ft}^{2}
\end{aligned}
$$

Solving for unknowns
ALGEBRA One diagonal of a rhombus is twice as long as the other diagonal. If the area of the rhombus is 169 square millimeters, what are the lengths of the diagonals?

$$
\begin{aligned}
A & =\frac{d_{1} d_{z}}{2} \quad A=169 \mathrm{~mm}^{2} \\
169 & =\frac{2 x \cdot x}{2} \\
169 & =x^{2} \\
13 & =x \quad 2 x=26 \mathrm{~mm}
\end{aligned}
$$

ConceptSummary Areas of Polygons

Parallelogram

$$
C=2 \pi r=\pi d
$$

5 KeyConcept Area of a Circle

Words	The area A of a circle is equal to π times
the square of the radius r.	
Symbols	$A=\pi r^{2}$

CONSTRUCTION Find the area of each circle. Round to the nearest tenth.
1.

$$
A=\pi(21)^{2}=1385 \cdot 44 \mathrm{gd}^{2}
$$

2.

$$
\begin{aligned}
& d=0.4 \mathrm{~km} \\
& r=0.2 \mathrm{~km} \\
& A=\pi(0.2)^{2} ; 0.13 \mathrm{~km}^{2}
\end{aligned}
$$

Finding missing measures
ALGEBRA Find the radius of a circle with an area of 95 square centimeters.

$$
\begin{aligned}
& A=\pi r^{2} \\
& \frac{95}{\pi}=\frac{\pi r^{2}}{\pi} \\
& 30.24=r^{2} \quad r=5.5 \mathrm{~cm}
\end{aligned}
$$

$$
\text { - divide by } \pi
$$

$$
\text { - take the } \sqrt{ }
$$

ALGEBRA The area of a circle is 196π square yards. Find the diameter.

$$
\begin{array}{cc}
A=\pi r^{2} & 14=r \\
196 \pi=\pi r^{2} & d=2 \times r \\
196=r^{2} &
\end{array}
$$

Find the area of each shaded region.

$$
A=\pi r^{2}
$$

Plan: Area of bigcircle - area of small circle.

Area of bis circle:

$$
\begin{aligned}
& r=9 \div 2=4.5 \\
& A=\pi(4.5)^{2}=63.62 \mathrm{~cm}^{2}
\end{aligned}
$$

diameter
Area of small circle:

$$
\begin{aligned}
& r=45 \div 2=2.25 \mathrm{~cm} \\
& A=\pi(2.25)^{2}=15.9 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of shaded $=63.62-15.9=47.72 \mathrm{~cm}^{2}$

Find the area of each shaded region.

radius of big circle $=12 \div 2=6 \mathrm{in}$
diameter of small circle $=12 \div 3=4$ in
radius 06 small circle $=4 \div 2=2$ in
Area of bis semicircle - area of one

$$
\frac{\text { Bigsircle: }}{A=\frac{\pi(6)^{2}}{2}}=113.1 \div 2=56.5 \sin ^{2}
$$

small semi circle;
small semicircle.
Actual Shape:
56.5s-6.29
$=50.26$ in 2

Area of sectors

KeyConcept Area of a Sector

The ratio of the area A of a sector to the area of the whole circle, πr^{2}, is equal to the ratio of the degree measure of the intercepted arc x to 360 .

PIZZA A circular pizza has a diameter of 12 inches and is cut into 8 congruent slices. What is the area of one slice to the nearest hundredth?

$$
\begin{aligned}
& d=12 \mathrm{in} \\
& r=6 \mathrm{in}
\end{aligned}
$$

central angle $=360 \div 8=45^{\circ}$

$$
\begin{array}{r}
A \\
\pi(6)^{2}
\end{array}=\frac{45}{360}
$$

Find the area of the shaded sector. Round to the nearest tenth.

3B.

$\frac{A}{\pi(6)^{2}}=\frac{148}{360}$
$A=\frac{148 \times \pi(6)^{2}}{360}$
$t=46.5 \mathrm{~m}^{2}$
$3 C$.

ART Yang created the stained glass window shown. The window is a regular octagon with a side length of 15 inches and an apothem of 18.1 inches. What is the area covered by the window?

1) Calculate the area of 1 triangle.
2) Multiply by 8 .

Area of triangle

$$
A=\frac{15 \times 18.1}{2}=135.75 \mathrm{in}^{2}
$$

Area of octagon

$$
135.75 \times 8=1086 \mathrm{in}^{2}
$$

Parts of a polygon

Area of a regular polygon
$\Delta: \frac{\text { baxexheight }}{2} .5$

Find the area of each regular polygon. Round to the nearest tenth.

Area of composite figures
MINIATURE GOLF The dimensions of a putting green at a miniature golf course are shown. How many square feet of carpet are needed to cover this green?

Find the area of each figure. Round to the nearest tenth if necessary.

HA.

Area($A=\frac{B+b}{2} \cdot h=\frac{15+8}{2} \cdot 7$

$$
A=80-5 \mathrm{in}^{2}
$$

Area (2) $A=l \times w=15 \times 5=75 \mathrm{in}^{2}$
Total $80.5+75=155.5 \mathrm{in}^{2}$

4B.

$15^{2}-9^{2}=h^{2}$
$h^{2}=144$
$h=12$
Areas (Trapereid)

$$
A=\frac{31+22}{2} \cdot 12=318 \mathrm{~cm}^{2}
$$

Area (2)

$$
A=\frac{\bar{U}(G)^{2}}{2}=56.55 \mathrm{~cm}^{2}
$$

Total $318+56.55=374.5535$
$\mathrm{~cm}^{2}$

Find the area of the figure. Round to the nearest tenth if necessary.
Plan: Area of rectangle - area of triangle, h

$$
A=5 \times 6=30 \mathrm{~m}^{2}
$$

Triangle;

$$
\begin{aligned}
& h^{2}=4^{2}-3^{2} \\
& h=2.65 \\
& A=\frac{6 \times 2.65}{2}=7.95 \\
& \text { Total } \quad 30-7.95=22.05 \mathrm{~m}^{2}
\end{aligned}
$$

Trapezoid
$B=12 \mathrm{~m}$ Triangle
$\begin{aligned} & B=12 \mathrm{~m} \\ & b=8 \mathrm{~m}\end{aligned} \quad A=\frac{2 \times 5.92}{2}$

$h=6.92$	$A=5.92 \mathrm{~m}^{2}$
$A=\frac{12+8.6 .92}{2}$	Total)

$\begin{aligned} A & =69.2 \mathrm{~m}^{2} \frac{1010}{69.2}-5.92 \\ & =63.28 \mathrm{~m}^{2}\end{aligned}$

SB.

Parallelogram

$$
A=b \times h
$$

$A=14 x^{9}=126 \mathrm{ft}^{2}$
kite
Total
126-63
$=63 \mathrm{ft}_{37}^{2}$

Similar figures

- Two figures are similar when their corresponding sides are proportional \rightarrow the ratio is called the scale factor. To the number you get when you divide the length of corresponding
- The perimeter of these figures is also proportional.

Area of Similar figures
The areas of similar figures are proportional to the square of the scale factor. scale factor of
 areas: $\begin{aligned} \frac{24}{6} & =4 \\ & =2^{2}\end{aligned}$
\square 3 $=2^{2}$
$A=3 \times 2=6$
2
Theorem 11.1 Areas of Similar Polygons
Words If two polygons are similar, then their
areas are proportional to the square
of the scale factor between them.
Example If $A B C D \sim F G H J$, then
$\frac{\text { area of } F G H J}{\text { area of } A B C D}=\left(\frac{F G}{A B}\right)^{2}$.
If two figures are similar, the scale facton
of their areas is the square of the scale facter
of the lengths. $K \rightarrow s$ scale factor $k^{2} \rightarrow$ scale factep
for length aren.

Finding the area from length measures.

If $\triangle J K L \sim \triangle P Q R$ and the area of $\triangle J K L$ is 30 square inches, find the area of $\triangle P Q R$.

-length scale factor: $k=\frac{12}{15}=\frac{4}{5}$

- area scale factor: $k^{2}=\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
$16 \quad 30$

$$
\begin{aligned}
16 x & =750 \\
x & =46.875 \mathrm{in}^{2}
\end{aligned}
$$

For each pair of similar figures, find the area of the green figure.

AA.

$$
k=\frac{8}{5} \quad k^{2}=\left(\frac{8}{5}\right)^{2}=\frac{64}{25}
$$

$$
\begin{aligned}
& \frac{64}{25}=\frac{32}{x} \\
& 64 x=32 \times 25
\end{aligned} \quad x=12.5 \mathrm{~cm}^{2}
$$

iB.

$k=\frac{6}{8} \quad k^{2}=\frac{36}{64}=\frac{9}{16}$

$$
\frac{9}{16}=\frac{13.5}{x}
$$

$$
x=24 f t^{2}
$$

Finding lengths from areas.
The area of $\square A B C D$ is 150 square meters.
The area of $\square F G H J$ is 54 square meters.
If $\square A B C D \sim \square F G H J$, find the scale factor of $\square F G H J$ to $\square A B C D$ and the value of x.

$$
\begin{array}{cl}
k^{2}=\frac{54}{150}=\frac{9}{25} & k=\sqrt{\frac{9}{25}}=\frac{3}{5} \\
\frac{3}{5}=\frac{x}{10} & \\
5 x=3 \times 10 & x=6 \\
5 x=30 &
\end{array}
$$

For each pair of similar figures, use the given areas to find the scale factor of the blue to the green figure. Then find x.

2A.

$$
\begin{aligned}
& \begin{array}{l}
A=50 \text { in }^{2} \\
k^{2}=\frac{50}{72}=\frac{25}{36} \quad k=\sqrt{\frac{25}{36}}=\frac{5}{6} \\
\frac{5}{6}=\frac{x}{6} \\
\frac{x}{x}=5
\end{array}
\end{aligned}
$$

LB.

$$
k^{2}=\frac{400}{64}=\frac{25}{4} \quad k=\sqrt{\frac{25}{4}}=\frac{5}{2}
$$

$$
\frac{5}{2}=\frac{40}{x}
$$

$$
5 x=2 \times 40
$$

$5 x=80 \quad x=16$
45

