CHAPTER 9 – RATIONAL EQUATIONS AND FUNCTIONS

9.1 – INVERSE AND JOINT VARIATION

DIRECT VARIATION

■ Direct variation occurs if y = kx, where k is a constant.

■ To check for direct variation, divide the output by the input. Direct

variation will always yield the same ratio.

х	у
31	217
20	140
17	119
12	84

INVERSE VARIATION

- Inverse variation occurs if $y = \frac{k}{x}$, where k is a non-zero constant.
- To check for direct variation, multiply the output by the input.

Inverse variation will always yield the same product.

х	у
1.5	20
2.5	12
4	7.5
5	6

CLASSIFYING DIRECT AND INVERSE VARIATION

GIVEN EQUATION

REWRITTEN EQUATION

TYPE OF VARIATION

a.
$$\frac{y}{5} = x$$

b.
$$y = x + 2$$

c.
$$xy = 4$$

CLASSIFYING DIRECT AND INVERSE VARIATION

GIVEN EQUATION

TYPE OF VARIATION

$$xy = \frac{1}{4}$$

$$\frac{x}{y} = 5$$

$$y = x - 3$$

$$\frac{1}{2}xy = 9$$

WRITING INVERSE VARIATION EQUATIONS

The variables x and y vary inversely, and y = 8 when x = 3.

- **a.** Write an equation that relates x and y.
- **b.** Find y when x = -4.

WRITING INVERSE VARIATION EQUATIONS

INVERSE VARIATION MODELS The variables x and y vary inversely. Use the given values to write an equation relating x and y. Then find y when x = 2.

29.
$$x = 5$$
, $y = -2$

30.
$$x = 4$$
, $y = 8$

31.
$$x = 7, y = 1$$

JOINT VARIATION

• Joint variation occurs when a quantity varies directly as the product of two or more other quantities. z = kxy

JOINT VARIATION

12.
$$x = 15yz$$

13.
$$\frac{x}{z} = 0.5y$$

14.
$$xy = 4z$$

15.
$$x = \frac{yz}{2}$$

JOINT VARIATION MODELS The variable z varies jointly with x and y. Use the given values to write an equation relating x, y, and z. Then find z when x = -4 and y = 7.

39.
$$x = 3$$
, $y = 8$, $z = 6$

40.
$$x = -12$$
, $y = 4$, $z = 2$

41.
$$x = 1, y = \frac{1}{3}, z = 5$$

42.
$$x = -6$$
, $y = 3$, $z = \frac{2}{5}$

Write an equation for the given relationship.

RELATIONSHIP

EQUATION

a. y varies directly with x.

b. y varies inversely with x.

c. z varies jointly with x and y.

d. y varies inversely with the square of x.

e. z varies directly with y and inversely with x.

9.2 – GRAPHING SIMPLE RATIONAL EQUATIONS

BASIC RATIONAL FUNCTION

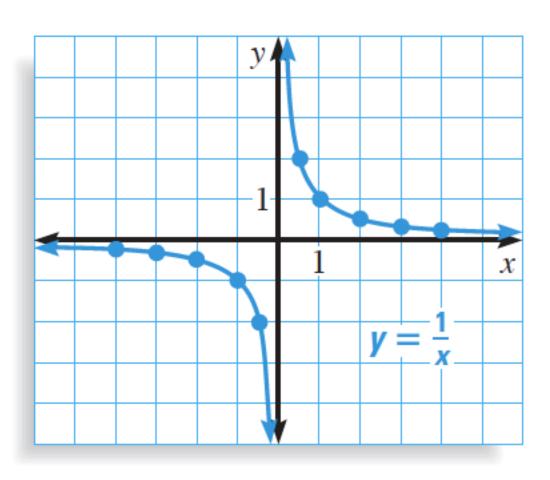
- A rational function is of the form $f(x) = \frac{p(x)}{q(x)}$, where p(x) and q(x) are polynomials and $q(x) \neq 0$.
- It has two parts called branches.

BASIC RATIONAL FUNCTION

- A rational function where the top and bottom polynomial are both linear (first degree).
- The graph is called a **hyperbola**.
- It has a horizontal and a vertical asymptote.
- It has two parts called branches.
- Domain and range are all real number except for the values of the asymptotes.

 $f(x) = \frac{1}{x}$ Domain and range are all real number except for x =0 and y = 0.

х	у
-4	$-\frac{1}{4}$
-3	$-\frac{1}{3}$
-2	$-\frac{1}{2}$
-1	-1
$-\frac{1}{2}$	-2



х	у
4	$\frac{1}{4}$
3	$\frac{1}{3}$
2	$\frac{1}{2}$
1	1
$\frac{1}{2}$	2

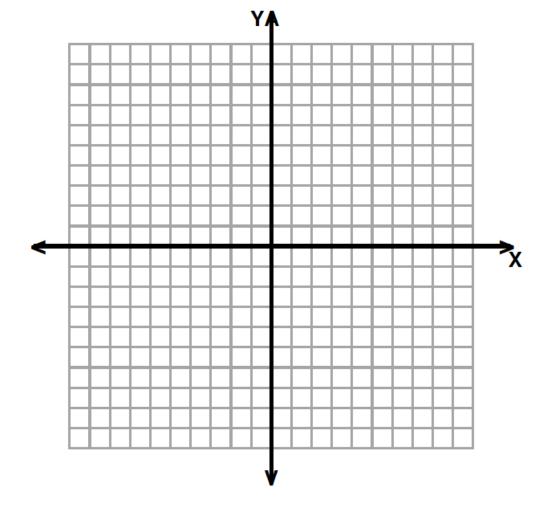
RATIONAL FUNCTION WITH TRANSFORMATIONS

- Is of the form $f(x) = \frac{a}{x-h} + k$ or $f(x) = \frac{ax+b}{cx+d}$.
- In the form $f(x) = \frac{a}{x-h} + k$, the asymptotes are x = h and y = k.
- In the form $f(x) = \frac{ax+b}{cx+d}$, the asymptotes are $x = \frac{-d}{c}$ and $y = \frac{a}{c}$.

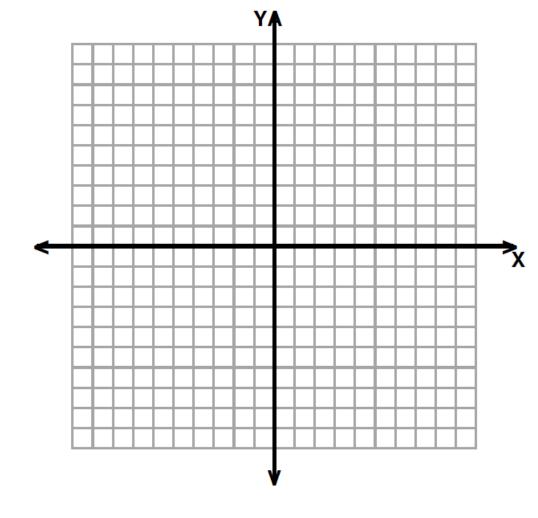
GRAPHING RATIONAL FUNCTIONS WITH TRANSFORMATIONS

- I) Find and graph the asymptotes.
- 2) Graph two points on each side of the vertical asymptote.

Graph $y = \frac{-2}{x+3} - 1$. State the domain and range.



Graph $y = \frac{x+1}{2x-4}$. State the domain and range.



9.3 – GRAPHING GENERAL RATIONAL FUNCTIONS

CHARACTERISTICS OF GENERAL RATIONAL FUNCTION

For a **rational function** of the form $f(x) = \frac{p(x)}{q(x)}$, where p(x) and q(x) are polynomials and $q(x) \neq 0$:

- The x-intercepts of the graph are the real zeros of p(x).
- The graph has vertical asymptotes at all the real zeros of q(x).

HORIZONTAL ASYMPTOTES OF GENERAL RATIONAL FUNCTION

For a rational function of the form

$$f(x) = \frac{p(x)}{q(x)} = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0}$$

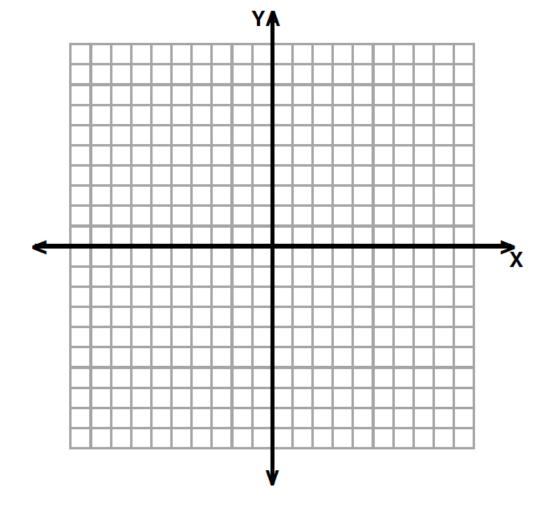
HORIZONTAL ASYMPTOTES OF GENERAL RATIONAL FUNCTION

Polynomial characteristic Asymptote / End behavior Bottom polynomial has higher y = 0degree. $f(x) = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0}$ $y = \frac{a_m}{b_n}$ Polynomials have same degree. Top polynomial has higher degree. $f(x) = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0} y = \frac{a_m}{b_n} x^{m-n}$

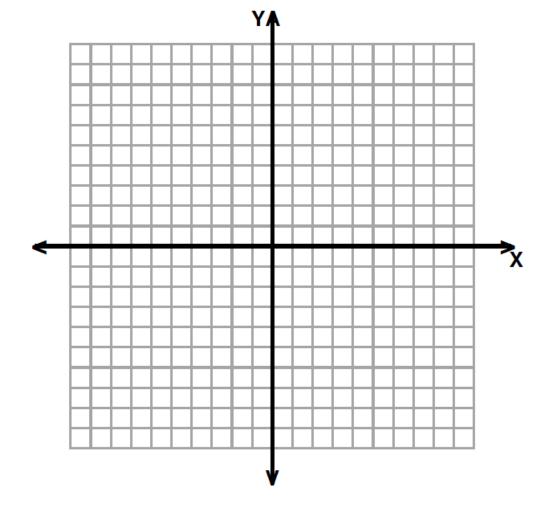
GRAPHING RATIONAL FUNCTIONS WITH TRANSFORMATIONS

- I) Find and graph the asymptotes.
- 2) Find and graph the zeros.
- 3) Find and graph some points around the asymptotes.

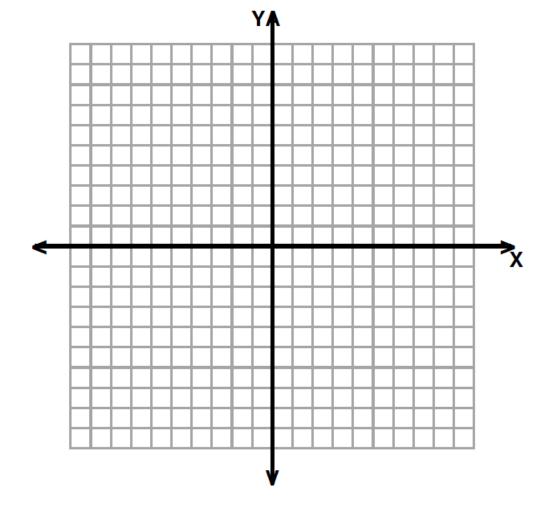
Graph $y = \frac{4}{x^2 + 1}$. State the domain and range.



Graph
$$y = \frac{3x^2}{x^2 - 4}$$
.



Graph
$$y = \frac{x^2 - 2x - 3}{x + 4}$$
.



9.4 – MULTIPLYING AND DIVIDING RATIONAL EXPRESSIONS

SIMPLIFYING A RATIONAL EXPRESSION

Simplify:
$$\frac{x^2 - 4x - 12}{x^2 - 4}$$

MULTIPLYING RATIONAL EXPRESSIONS

Multiply:
$$\frac{4x - 4x^2}{x^2 + 2x - 3} \cdot \frac{x^2 + x - 6}{4x}$$

MULTIPLYING RATIONAL EXPRESSIONS BY A POLYNOMIAL

Multiply:
$$\frac{x+3}{8x^3-1} \cdot (4x^2+2x+1)$$

DIVIDING RATIONAL EXPRESSIONS

Divide:
$$\frac{5x}{3x - 12} \div \frac{x^2 - 2x}{x^2 - 6x + 8}$$

MULTIPLYING AND DIVIDING

Divide:
$$\frac{6x^2 + 7x - 3}{6x^2} \div (2x^2 + 3x)$$

9.5 – ADDITION, SUBTRACTION AND COMPLEX FRACTIONS

ADDING / SUBTRACTING RATIONAL EXPRESSIONS WITH SAME DENOMINATORS

Perform the indicated operation.

$$\frac{2x}{x+3} - \frac{4}{x+3}$$

ADDING RATIONAL EXPRESSIONS WITH DIFFERENT DENOMINATORS

Add:
$$\frac{5}{6x^2} + \frac{x}{4x^2 - 12x}$$

SUBTRACTING RATIONAL EXPRESSIONS WITH DIFFERENT DENOMINATORS

Subtract:
$$\frac{x+1}{x^2+4x+4} - \frac{2}{x^2-4}$$

SIMPLIFYING COMPLEX FRACTIONS

Simplify:
$$\frac{\frac{2}{x+2}}{\frac{1}{x+2} + \frac{2}{x}}$$

COMPLEX FRACTIONS "CHEAT SHEET"

$$\frac{a}{\frac{b}{c}} = \frac{ac}{b}$$

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$$

9.6 – SOLVING RATIONAL EQUATIONS

STEPS TO SOLVING

- I) Find the least common denominator of all the rational parts.
- 2) Multiply both sides by the LDC.
- 3) Solve the remaining equation.
- 4) Check for extraneous solutions.

EQUATION WITH ONE SOLUTION

Solve:
$$\frac{4}{x} + \frac{5}{2} = -\frac{11}{x}$$

EQUATION WITH AN EXTRANEOUS SOLUTION

Solve:
$$\frac{5x}{x-2} = 7 + \frac{10}{x-2}$$

EQUATION WITH TWO SOLUTIONS

Solve:
$$\frac{4x+1}{x+1} = \frac{12}{x^2-1} + 3$$

SOLVING BY CROSS-MULTIPLYING

Solve:
$$\frac{2}{x^2 - x} = \frac{1}{x - 1}$$