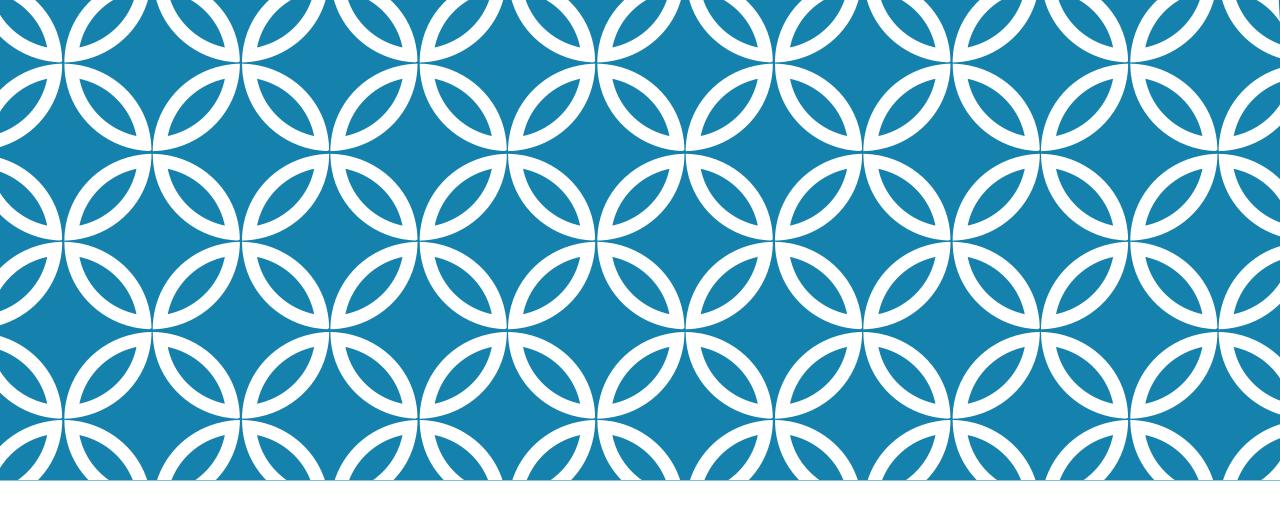


CHAPTER 7

Powers, Roots and Radicals



7.1 NTH ROOTS AND RATIONAL Exponents

RATIONAL EXPONENTS

RATIONAL EXPONENTS

Let $a^{1/n}$ be an *n*th root of *a*, and let *m* be a positive integer.

•
$$a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^m$$

• $a^{-m/n} = \frac{1}{a^{m/n}} = \frac{1}{(a^{1/n})^m} = \frac{1}{(\sqrt[n]{a})^m}, a \neq 0$

In addition:

- Even roots of positive numbers have two solutions.
- Even roots of negative numbers have no solution.
- Odd roots have one solution.
- Any root of 0 is 0.

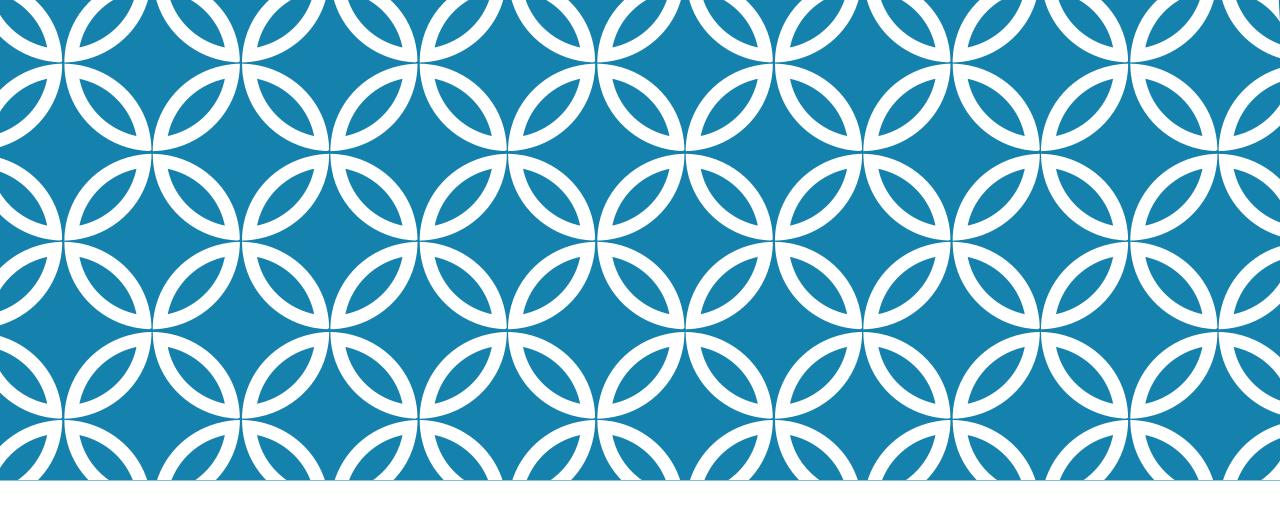
Evaluate the expression.

4.
$$\sqrt[4]{81}$$
 5. $-(49^{1/2})$ **6.** $(\sqrt[3]{-8})^5$ **7.** $3125^{2/5}$

Solve the equation.

- -

8.
$$x^3 = 125$$
 9. $3x^5 = -3$ **10.** $(x + 4)^2 = 0$ **11.** $x^4 - 7 = 9993$



7.2 PROPERTIES OF RATIONAL EXPONENTS

PROPERTIES OF RATIONAL EXPONENTS

Let *a* and *b* be real numbers and let *m* and *n* be rational numbers. The following properties have the same names as those listed on page 323, but now apply to rational exponents as illustrated.

CONCEPT

SUMMARY

PROPERTY EXAMPLE $3^{1/2} \cdot 3^{3/2} = 3^{(1/2 + 3/2)} = 3^2 = 9$ **1**. $a^m \cdot a^n = a^{m+n}$ $(4^{3/2})^2 = 4^{(3/2 \cdot 2)} = 4^3 = 64$ **2.** $(a^m)^n = a^{mn}$ $(9 \cdot 4)^{1/2} = 9^{1/2} \cdot 4^{1/2} = 3 \cdot 2 = 6$ **3.** $(ab)^m = a^m b^m$ **4.** $a^{-m} = \frac{1}{a^m}, a \neq 0$ $25^{-1/2} = \frac{1}{25^{1/2}} = \frac{1}{5}$ 5. $\frac{a^m}{a^n} = a^{m-n}, a \neq 0$ $\frac{6^{5/2}}{c^{1/2}} = 6^{(5/2 - 1/2)} = 6^2 = 36$ $6. \qquad \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, \ b \neq 0$ $\left(\frac{8}{27}\right)^{1/3} = \frac{8^{1/3}}{27^{1/3}} = \frac{2}{3}$

5. 3^{1/4} • 3^{3/4}

6. $(5^{1/3})^6$

7. $\sqrt[3]{16} \cdot \sqrt[3]{4}$ **8.** 4^{-1/2}

9. $\sqrt[4]{\frac{16}{81}}$

10. $\sqrt[3]{\frac{1}{4}}$

11. $8^{1/7} + 2(8^{1/7})$ **12.** $\sqrt{200} - 3\sqrt{2}$

13. $x^{2/3} \cdot x^{4/3}$

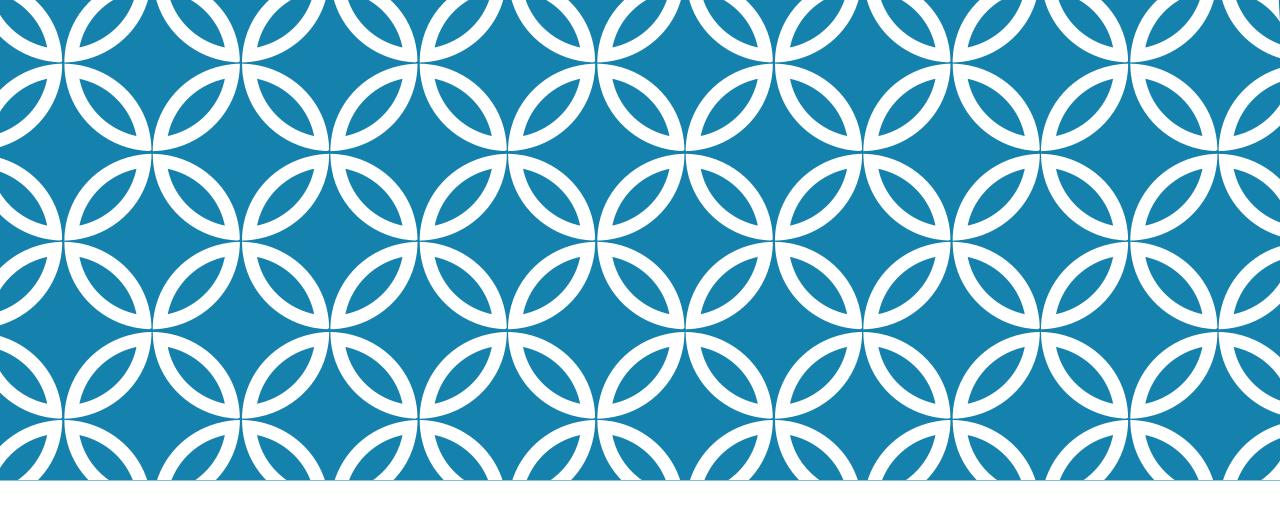
14. $(y^{1/6})^3$

15. $\sqrt{4a^6}$

16. $b^{-1/3}$

17. $\sqrt[5]{\frac{x^{10}}{y^5}}$ **18.** $\sqrt[3]{\frac{x^2}{z}}$

19. $2a^{1/5} - 6a^{1/5}$ **20.** $x\sqrt[3]{y^6} + y^2\sqrt[3]{x^3}$



7.3 POWER FUNCTIONS AND FUNCTION OPERATIONS CONCEPT

SUMMARY

Let *f* and *g* be any two functions. A new function *h* can be defined by performing any of the four basic operations (addition, subtraction, multiplication, and division) on *f* and *g*.

Operation	Definition	Example: $f(x) = 2x$, $g(x) = x + 1$
ADDITION	h(x) = f(x) + g(x)	h(x) = 2x + (x + 1) = 3x + 1
SUBTRACTION	h(x) = f(x) - g(x)	h(x) = 2x - (x + 1) = x - 1
MULTIPLICATION	$h(x) = f(x) \cdot g(x)$	$h(x) = (2x)(x + 1) = 2x^2 + 2x$
DIVISION	$h(x) = \frac{f(x)}{g(x)}$	$h(x) = \frac{2x}{x+1}$

The domain of *h* consists of the *x*-values that are in the domains of both *f* and *g*. Additionally, the domain of a quotient does not include *x*-values for which g(x) = 0.

COMPOSITION OF FUNCTIONS

A composition of functions, written $f \circ g$ or f(g(x)), occurs when you input a function into another function.

The result of a composition is a function.

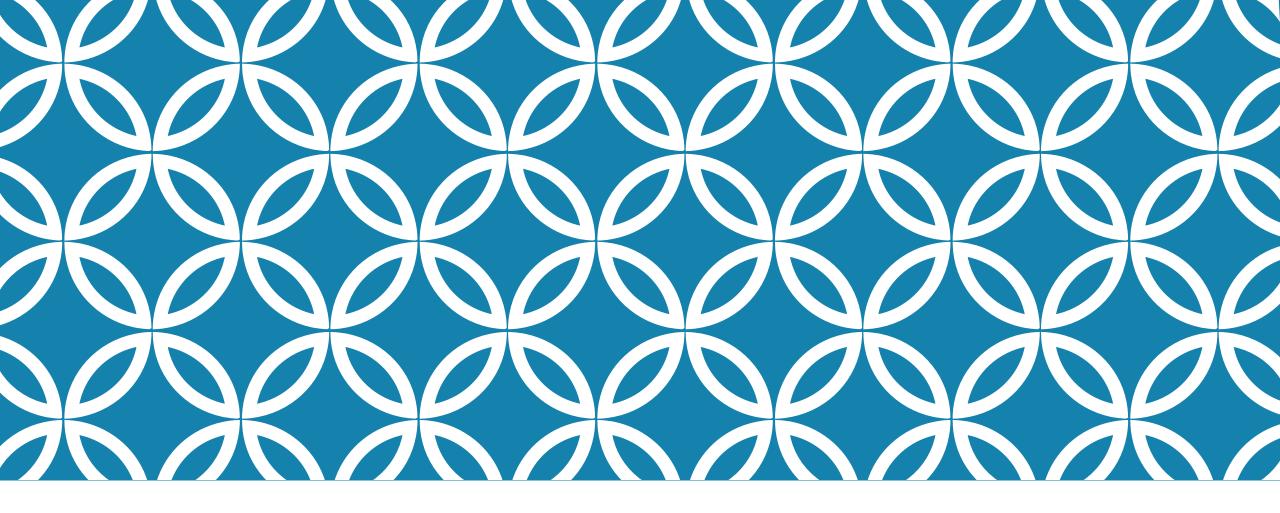
FINDING THE DOMAIN OF $f \circ g$

 $f \circ g$ or f(g(x))

1) Find the domain of f(x).

2) Set g(x) equal to the value(s) from step 1 and solve.

Let $f(x) = 3x^{-1}$ and g(x) = 2x - 1. Find the following. **a.** f(g(x)) **b.** g(f(x)) **c.** f(f(x)) **d.** the domain of each composition



7.4 INVERSE FUNCTIONS

DEFINITION: INVERSE FUNCTION

INVERSE FUNCTIONS

Functions f and g are inverses of each other provided: f(g(x)) = x and g(f(x)) = xThe function g is denoted by f^{-1} , read as "f inverse."

The domain of the inverse is the range of the original function.

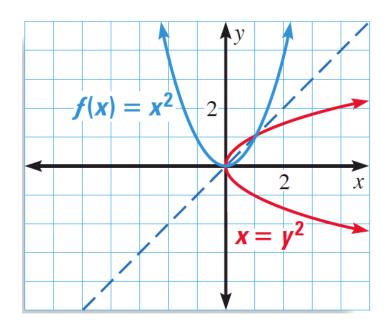
METHODS TO GET THE INVERSE

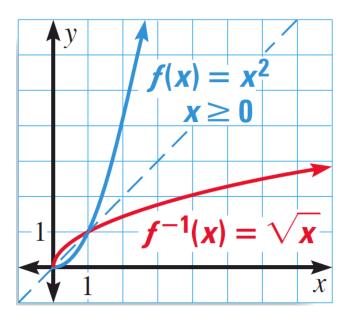
- •Graphically.
- •From coordinates.
- •Algebraically.

FINDING THE INVERSE GRAPHICALLY

1) Draw the lines y = x.

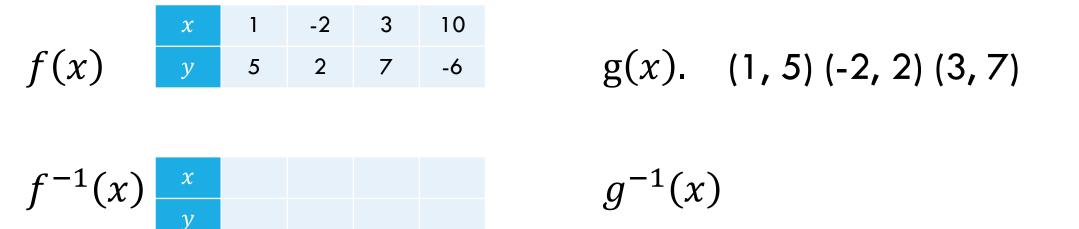
2) Draw the reflection of the function with respect to lines y = x.





FINDING THE INVERSE FROM COORDINATES

Switch the x and lines y coordinates.



FINDING THE INVERSE ALGEBRAICALLY

- 1) Switch the x and y.
- 2) Solve for y.
- Find an equation for the inverse of the relation y = 2x 4

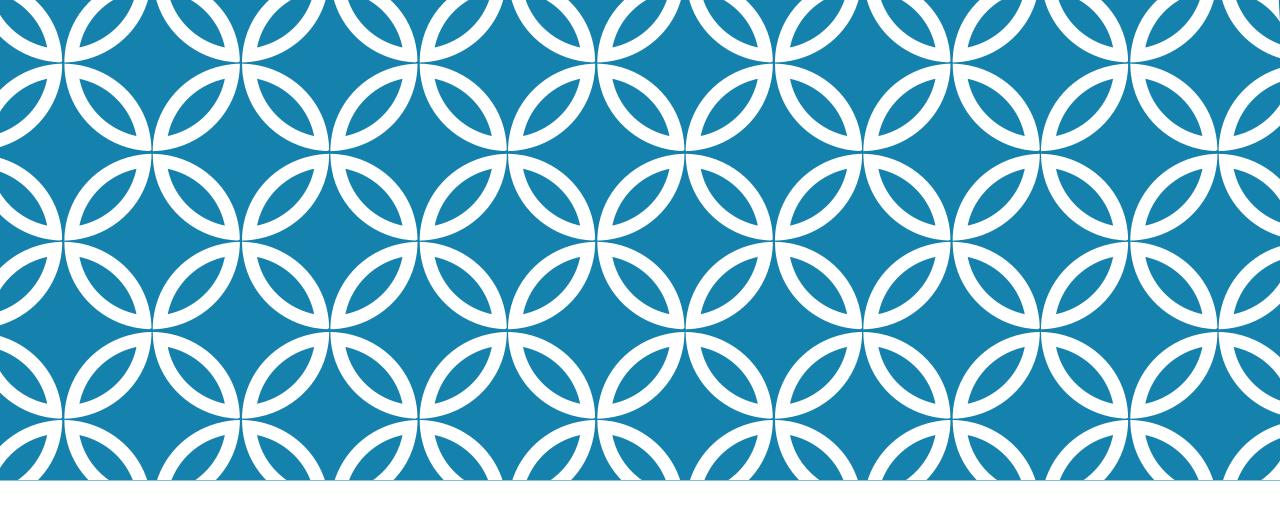
find the inverse
$$f(x) = \frac{1}{2}x^3 - 2$$

VERIFYING THE INVERSE

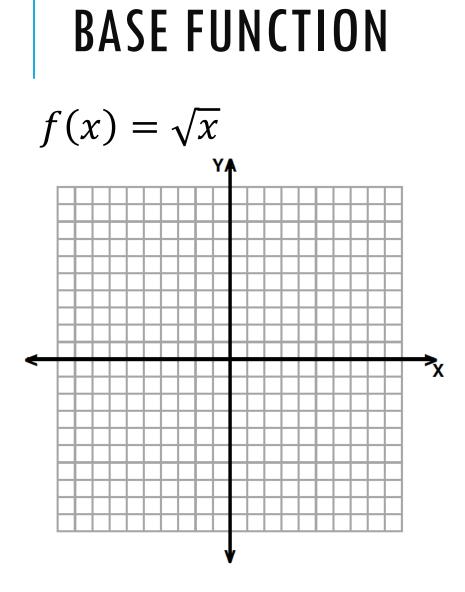
$$f^{-1}(g(x)) = g^{-1}(f(x)) = x$$

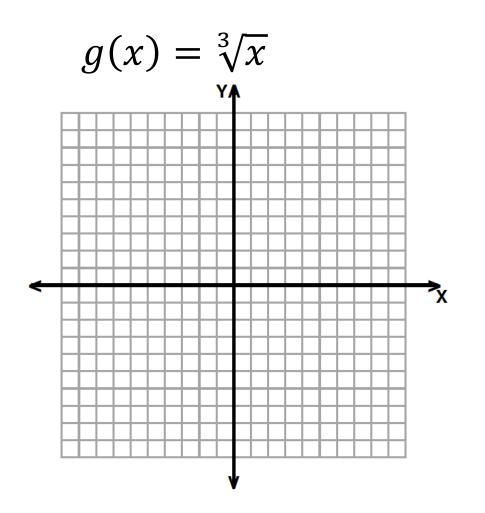
To verify that a function is the inverse of another, find $f \circ g$. If is equals x, the functions are inverses of each other.

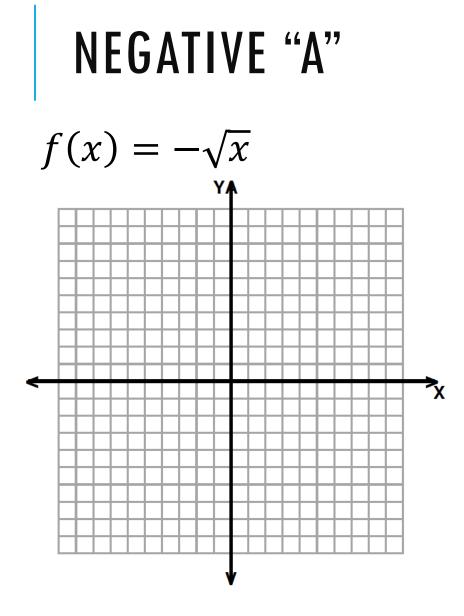
Verify that
$$f(x) = 2x - 4$$
 and $f^{-1}(x) = \frac{1}{2}x + 2$ are inverses.

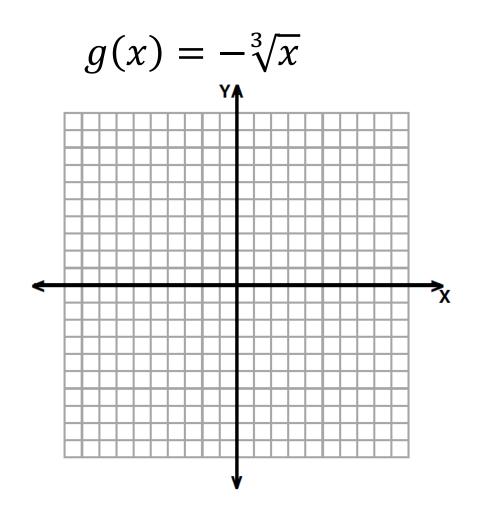


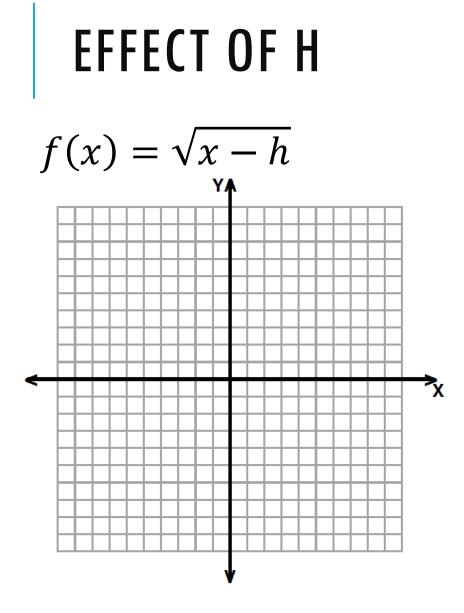
7.5 GRAPHING SQUARE ROOT AND CUBE ROOT FUNCTIONS

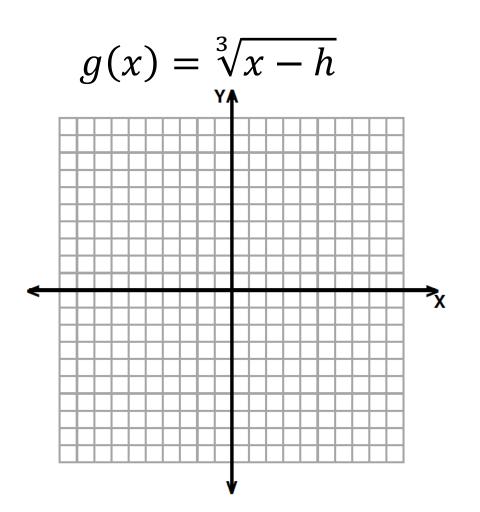


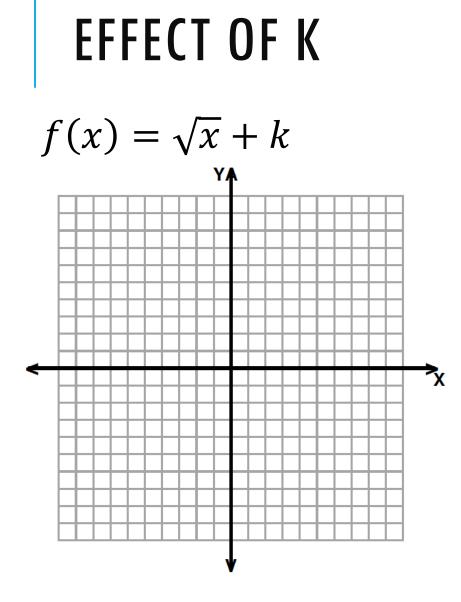


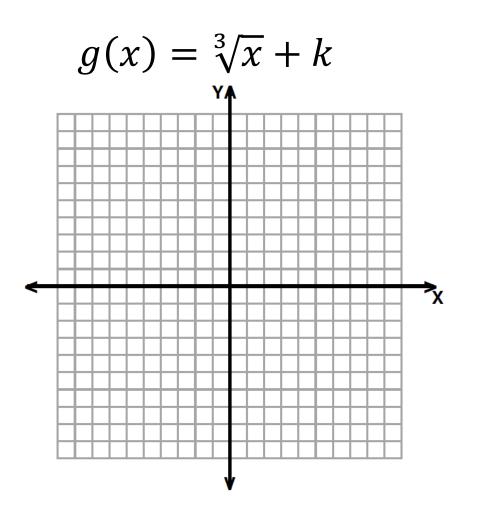








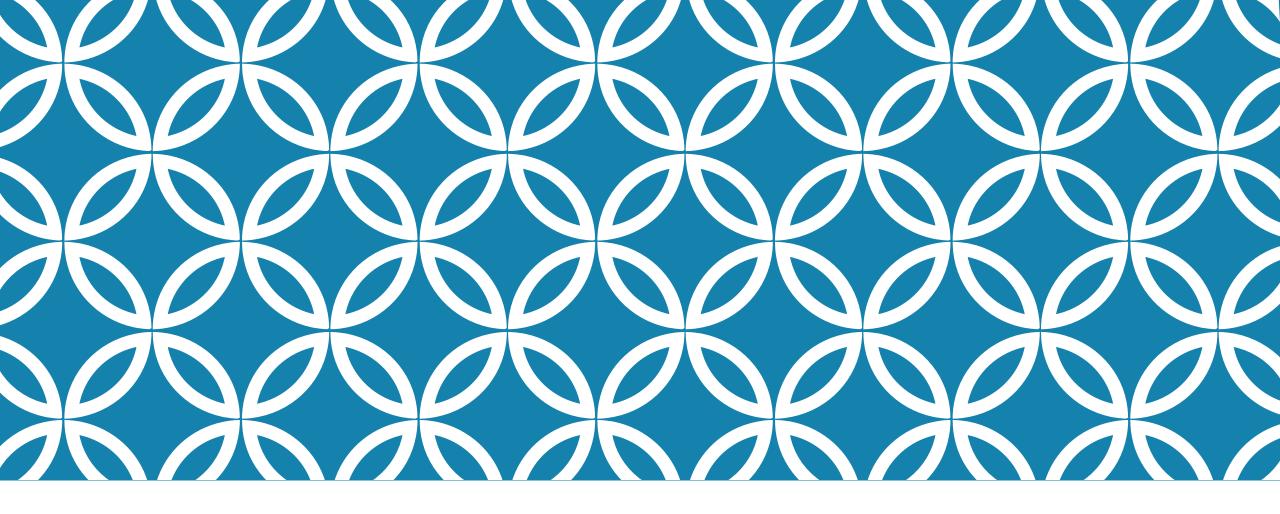




DOMAIN AND RANGE

 $f(x) = \sqrt{x}$

$$g(x) = \sqrt[3]{x}$$



7.6 SOLVING RADICAL EQUATIONS

STEPS TO SOLVING RADICAL EQUATIONS

1) Solve the equation.

2) Plug solution(s) into original equation to check for extraneous solution.

Solve $\sqrt[3]{x} - 4 = 0$.

Solve $2x^{3/2} = 250$.

Solve $\sqrt{4x - 7} + 2 = 5$.

Solve
$$\sqrt{3x+2} - 2\sqrt{x} = 0$$
.

Solve $x - 4 = \sqrt{2x}$.