

CHAPTER 7
Powers, Roots and Radicals

7.1 NTH ROOTS AND RATIONAL EXPONENTS

RATIONAL EXPONENTS
RATIONAL EXPONENTS
Let $a^{1 / n}$ be an nth root of a, and let m be a positive integer. $\sqrt[n]{a}=a^{1 / n}$

- $a^{m / n}=\left(a^{1 / n}\right)^{m}=(\sqrt[n]{a})^{m}$

$$
\begin{aligned}
& \sqrt{a}=a^{1 / 2} \\
& \sqrt[3]{a}=a^{1 / 3}
\end{aligned}
$$

- $a^{-m / n}=\frac{1}{a^{m / n}}=\frac{1}{\left(a^{1 / n}\right)^{m}}=\frac{1}{(\sqrt[n]{a})^{m}}, a \neq 0$

In addition:

- Even roots of positive numbers have two solutions. $\sqrt{4}= \pm 2$
- Even roots of negative numbers have no solution. $\sqrt{-4} \rightarrow$ no solution
- Odd roots have one solution. $\sqrt[3]{8}=2 \quad \sqrt[3]{-8}=2$
- Any root of 0 is $0 . \sqrt{0}=0 \quad 5 \sqrt{0}=0$

Evaluate the expression.
4. $\sqrt[4]{81}=3$
$x^{4}=81$
$3^{4}=81$
5. $-\left(49^{1 / 2}\right)$
6. $(\sqrt[3]{-8})^{5}$
7. $3125^{2 / 5}$
$-\sqrt{49}$
$(-2)^{5}$
$(\sqrt[5]{3125})^{2}$
$-(\pm 7)$
± 7
-32

$$
\begin{aligned}
& x^{5}=3125 \\
& 5^{2}=25
\end{aligned}
$$

Solve the equation.
8. $x^{3}=125$
9. 3

$$
\sqrt[3]{x^{3}}=\sqrt[3]{125}
$$

$$
x=5
$$

$$
\begin{array}{ccc}
\frac{3 x^{5}}{3}=\frac{-3}{3} & 10 \cdot \sqrt{(x+4)^{2}}=\sqrt{0} & \sqrt[11 \cdot x^{4}-7=9993]{ } \\
x^{5}=-1 & x+4=0 & \sqrt[4]{x^{4}} \pm \sqrt{10000} \\
x=\sqrt[5]{-1} & x=-4 & x= \pm 10 \\
x=-1 & &
\end{array}
$$

7.2 PROPERTIES OF RATIONAL EXPONENTS

Let a and b be real numbers and let m and n be rational numbers. The following properties have the same names as those listed on page 323, but now apply to rational exponents as illustrated.

PROPERTY

1. $a^{m} \cdot a^{n}=a^{m+n}$
2. $\left(a^{m}\right)^{n}=a^{m n}$
3. $(a b)^{m}=a^{m} b^{m}$
4. $a^{-m}=\frac{1}{a^{m}}, a \neq 0$
5. $\quad \frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0$
6. $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}, b \neq 0$

EXAMPLE

$$
3^{1 / 2} \cdot 3^{3 / 2}=3^{(1 / 2+3 / 2)}=3^{2}=9
$$

$$
\left(4^{3 / 2}\right)^{2}=4^{(3 / 2 \cdot 2)}=4^{3}=64
$$

$$
(9 \cdot 4)^{1 / 2}=9^{1 / 2} \cdot 4^{1 / 2}=3 \cdot 2=6
$$

$$
25^{-1 / 2}=\frac{1}{25^{1 / 2}}=\frac{1}{5}
$$

$$
\frac{6^{5 / 2}}{6^{1 / 2}}=6^{(5 / 2-1 / 2)}=6^{2}=36
$$

$$
\left(\frac{8}{27}\right)^{1 / 3}=\frac{8^{1 / 3}}{27^{1 / 3}}=\frac{2}{3}
$$

5. $3^{1 / 4} \cdot 3^{3 / 4}$
6. $\left(5^{1 / 3}\right)^{6}$
7. $\sqrt[3]{16} \cdot \sqrt[3]{4}$
8. $4^{-1 / 2}$

$3 \frac{4}{4}$	$5^{\frac{6}{3}}$
3^{1}	5^{2}
	25

$16^{1 / 3} 4^{1 / 3}$
$\frac{1}{4^{1 / 2}}$
$(16.4)^{1 / 3}$
$\frac{1}{\sqrt{4}}$
$\pm \frac{1}{2}$

$$
\begin{array}{cccc}
13 \cdot x^{2 / 3} \cdot x^{\frac{2}{3 / 3}}+\frac{14}{3} & y^{14 \cdot\left(b^{1 / 9)}\right.} & \sqrt[{15 \cdot \sqrt{4 a^{6}}}]{ } \begin{array}{c}
x^{1 / 2}\left(a^{6} 2\right.
\end{array} & \frac{1}{16 \cdot b^{-1 / 3}} \\
x^{\frac{6}{3}} & y^{1 / 2} & 2 a^{6 \cdot \frac{1}{2}} & \frac{1}{b^{1 / 3}} \\
x^{2} & \sqrt{y} & 2 a^{3} & \frac{1}{\sqrt[3]{b}}
\end{array}
$$

7.3 POWER FUNCTIONS AND FUNCTION OPERATIONS

Let f and g be any two functions. A new function h can be defined by performing any of the four basic operations (addition, subtraction, multiplication, and division) on f and g.

Operation
Definition

$$
\begin{aligned}
h(x) & =f(x)+g(x) \\
h(x) & =f(x)-g(x) \\
h(x) & =f(x) \cdot g(x) \\
h(x) & =\frac{f(x)}{g(x)}
\end{aligned}
$$

ADDITION

SUBTRACTION
MULTIPLICATION

Example: $f(x)=2 x, g(x)=x+1$

$$
\begin{aligned}
& h(x)=2 x+(x+1)=3 x+1 \\
& h(x)=2 x-(x+1)=x-1 \\
& h(x)=(2 x)(x+1)=2 x^{2}+2 x \\
& h(x)=\frac{2 x}{x+1} \quad \text { X才-1 }
\end{aligned}
$$

The domain of h consists of the x-values that are in the domains of both f and g. Additionally, the domain of a quotient does not include x-values for which $g(x)=0$.

COMPOSITION OF FUNCTIONS

A composition of functions, written $f \circ g$ or $f(g(x))$, occurs when you input a function into another function.

The result of a composition is a function. Its domain is made up of the values that belong to the range of f and the domain of g.

FINDING THE DOMAIN OF $f \circ g$

$f \circ g$ or $f(g(x))$

1) Find the domain of $f(x)$.
2) Set $g(x)$ equal to the value(s) from step 1 and solve.
3) The domain of $f(g(x))$ is the set of values that was allowed through by $g(x)$ and is allowed through by the function resulting from $f(g(x))$.

Let $f(x)=3 x^{-1}$ and $g(x)=2 x-1$. Find the following.
$\begin{array}{llll}\text { a. } f(g(x)) & \text { b. } g(f(x)) & \text { c. } f(f(x)) & \text { d. the domain of each composition }\end{array}$
a) $f(g(x))=3(2 x-1)^{-1}=\frac{3}{2 x-1}$
b) $g(f(x))=2\left(3 x^{-1}\right)-1=6 x^{-1}=\frac{6}{x}-1$
c) $3\left(3 x^{-1}\right)^{-1}=\frac{3}{3 x^{-1}}=x$

Let $f(x)=3 x^{-1}$ and $g(x)=2 x-1$. Find the following.
$\begin{array}{llll}\text { a. } f(g(x)) & \text { b. } g(f(x)) & \text { c. } f(f(x)) & \text { d. the domain of each composition }\end{array}$
a) $f(g(x))=3(2 x-1)^{-1}=\frac{3}{2 x-1}$

Domain:
(1) $f(x)=\frac{3}{x} \rightarrow x \neq 0 \quad g(x) \neq 0$
(2) $\quad \begin{aligned} & 2 x-1 \\ & 2 x \neq 1\end{aligned}$ Dom $f(g(x))$ is all $2 x \neq 1$
$x \neq \frac{1}{2}$$\quad$ real numbers except $x=\frac{1}{2}$

Let $f(x)=3 x^{-1}$ and $g(x)=2 x-1$. Find the following.
a. $f(g(x))$
b. $g(f(x))$
c. $f(f(x))$
d. the domain of each composition
b) $g(f(x))=2\left(3 x^{-1}\right)-1=6 x^{-1}=\frac{6}{x}-1$

Domain: no restrictions for 9 $f(x)$ has $x \neq 0$ as a restriction

Let $f(x)=3 x^{-1}$ and $g(x)=2 x-1$. Find the following.
a. $f(g(x))$
b. $g(f(x))$
c. $f(f(x))$
d. the domain of each composition
c) $3\left(3 x^{-1}\right)^{-1}=\frac{3}{3 x^{-1}}=x$

Domain:
The domain of $f(x)$ excludes $x=0$, so the domain of $f(f(x))$ ass excludes $x=0$.

7.4 INVERSE FUNCTIONS

DEFINITION: INVERSE FUNCTION

INVERSE FUNCTIONS

Functions f and g are inverses of each other provided:

$$
f(g(x))=x \quad \text { and } \quad g(f(x))=x
$$

The function g is denoted by f^{-1}, read as " f inverse."

The domain of the inverse is the range of the original function.

METHODS TO GET THE INVERSE

-Graphically.

- From coordinates.
-Algebraically.

FINDING THE INVERSE GRAPHICALLY

1) Draw the lines $y=x$.
2) Draw the reflection of the function with respect to lines $y=x$.

FINDING THE INVERSE FROM COORDINATES

Switch the x and lines y coordinates.

FINDING THE INVERSE ALGEBRAICALLY

1) Switch the x and y.
2) Solve for y.

Find an equation for the inverse of the relation $y=2 x-4$

$$
\begin{aligned}
& x=2 y-4 \\
& \frac{x+4}{2}=\frac{2 y}{2} \\
& \frac{x+4}{2}=y \quad y=\frac{x}{2}+2
\end{aligned}
$$

find the inverse f

$$
\begin{aligned}
f(x) & =\frac{1}{2} x^{3}-2 \\
x & =\frac{1}{2} y^{3}-2 \\
x & =\frac{y^{3}}{2}-2
\end{aligned}
$$

$$
\begin{gathered}
2 \cdot(x+2)-\frac{y^{3}}{2} \cdot 2 \\
\sqrt[3]{2 x+4}=\sqrt[3]{y^{3}} \\
y=\sqrt[3]{2 x+4}
\end{gathered}
$$

VERIFYING THE INVERSE

$$
f^{-1}(f(x))=f\left(f^{-1}(x)\right)=x
$$

To verify that a function is the inverse of another, find $f \circ f^{-1}$. If is equals x, the functions are inverses of each other.

$$
\left.\begin{aligned}
f\left(f^{-1}(x)\right) & =2\left(\frac{1}{2} x+2\right)-4 \\
& =x+4-4 \\
& =x
\end{aligned} \right\rvert\, \begin{aligned}
& \text { Verify that } f(x)=2-4 \\
&=x-2+2 \\
&=x
\end{aligned}
$$

7.5 GRAPHING SQUARE ROOT AND CUBE ROOT FUNCTIONS

BASE FUNCTION

$f(x)=\sqrt{x}$

NEGATIVE "A"

$$
f(x)=-\sqrt{x}
$$

EFFECT OF H

EFFECT OF K

$$
f(x)=\sqrt{x}+k
$$

DOMAIN AND RANGE

$$
f(x)=\sqrt{x}
$$

$$
g(x)=\sqrt[3]{x}
$$

7.6 SOLVING RADICAL EQUATIONS

STEPS TO SOLVING RADICAL EQUATIONS

1) Solve the equation.
2) Plug solution(s) into original equation to check for extraneous solution.

Solve $\sqrt[3]{x}-4=0$

Solve $2 x^{3 / 2}=250$
-

．

\qquad
\square

$2 x^{3 / 2}=250$ \qquad
\square
\square
\square
\qquad
\qquad
\qquad
\square
\qquad
\square

 \qquad
\qquad
 \square
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad

\qquad
\square （ －
 \square

 $+$正 \square號 \square \square \square \square \square \square

\qquad

$3 / 2=$

[^0]\square

，

Solve $\sqrt{4 x-7}+2=5$

\square

 \square （ \square －

\square

[^1] \qquad

Solve $\sqrt{3 x+2}-2 \sqrt{x}=0$.

.
 \footnotetext{ \qquad

}

帾

Solve $x-4=\sqrt{2 x}$ ． Solve $x-4=\sqrt{ } 2 x$ ．
\square

Abstract

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
再

[^2]	

｜

再

2

[^0]:[^1]: \square

[^2]: 正

