

CHAPTER 7

Powers, Roots and Radicals

7.1 NTH ROOTS AND RATIONAL Exponents

RATIONAL EXPONENTS

RATIONAL EXPONENTS

Let $a^{1/n}$ be an *n*th root of *a*, and let *m* be a positive integer. $\sqrt{2} = 0^{n}$

•
$$a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^m$$

• $a^{-m/n} = \frac{1}{a^{m/n}} = \frac{1}{(a^{1/n})^m} = \frac{1}{(\sqrt[n]{a})^m}, a \neq 0$

$$\sqrt{a} : a^{1/2}$$

 $\sqrt[3]{a} : a^{1/3}$

In addition: 🕥 - Even roots of negative numbers have no solution. $\sqrt{4} = \pm 2$ - Odd roots have one solution. $\sqrt{-4} - \frac{1}{2}$ m solution.

- Any root of 0 is 0. $\sqrt{0} = 0$

Evaluate the expression.

6. $(\sqrt[3]{-8})^5$ **7.** 3125^{2/5} (.-2)5 (\$3125) $\chi^{5} = 3 |_{2}5$ -32 $5^{2}_{=}25$

Solve the equation.

8.
$$x^3 = 125$$

9. $3x^5 = 3$
9.

$$3x^{5} = -3$$

 $3 - 3$
 $x = -1$
 $x = -1$
 $x = -1$
 $x = -1$

10.
$$(x + 4)^2 = 0$$

 $X + 4 = 0$
 $X = -4$
 $X = \frac{11}{2}$
 $X = \frac{10}{2}$
 $X = \frac{10}{2}$

7.2 PROPERTIES OF RATIONAL EXPONENTS

PROPERTIES OF RATIONAL EXPONENTS

Let *a* and *b* be real numbers and let *m* and *n* be rational numbers. The following properties have the same names as those listed on page 323, but now apply to rational exponents as illustrated.

CONCEPT

SUMMARY

PROPERTY EXAMPLE $3^{1/2} \cdot 3^{3/2} = 3^{(1/2 + 3/2)} = 3^2 = 9$ **1**. $a^m \cdot a^n = a^{m+n}$ $(4^{3/2})^2 = 4^{(3/2 \cdot 2)} = 4^3 = 64$ **2.** $(a^m)^n = a^{mn}$ $(9 \cdot 4)^{1/2} = 9^{1/2} \cdot 4^{1/2} = 3 \cdot 2 = 6$ **3.** $(ab)^m = a^m b^m$ **4.** $a^{-m} = \frac{1}{a^m}, a \neq 0$ $25^{-1/2} = \frac{1}{25^{1/2}} = \frac{1}{5}$ 5. $\frac{a^m}{a^n} = a^{m-n}, a \neq 0$ $\frac{6^{5/2}}{c^{1/2}} = 6^{(5/2 - 1/2)} = 6^2 = 36$ $6. \qquad \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, \ b \neq 0$ $\left(\frac{8}{27}\right)^{1/3} = \frac{8^{1/3}}{27^{1/3}} = \frac{2}{3}$

6. (5^{1/3})⁶ **5.** 3^{1/4} • 3^{3/4} 53 34 51 31 25

7. $\sqrt[3]{16} \cdot \sqrt[3]{4}$ **8.** 4^{-1/2} 16343 L″2 $(16-4)^{1/3}$ <u>|</u> [4] 43 (64) +<u>'</u>

9. $\sqrt[4]{\frac{16}{81}}$ 4/16 4/81

10. $\sqrt[3]{\frac{1}{4}}$ **11.** $8^{1/7} + 2(8^{1/7})$ 8 m (1+2) 54 3.8' 1,1/3 + 278 18 2 different 358 methods

12. $\sqrt{200} - 3\sqrt{2}$ $\sqrt{100} - 3\sqrt{2}$ $10/2 - 3\sqrt{2}$ 7/2

13. $x^{2/3} \cdot x^{4/3}$ V3+5 y 63

14. $(y^{1/6})^3$ 13/6 12

15. $\sqrt{4a^6}$ $\sqrt{4(a^6)^{1/2}}$ 206.12 203

16. $b^{-1/3}$ h13 316

18. $\sqrt[3]{\frac{x^2}{7}}$ $\left(\frac{\chi^2}{Z}\right)^{1/3}$ Y-3 21/3

19. $2a^{1/5} - 6a^{1/5}$ -401/5 -45/2

20. $x\sqrt[3]{y^6} + y^2\sqrt[3]{x^3}$ $x(y^{6})^{3} - y(x^{3})^{3}$ XYZYX $2xy^{2}$

7.3 POWER FUNCTIONS AND FUNCTION OPERATIONS CONCEPT

SUMMARY

Let *f* and *g* be any two functions. A new function *h* can be defined by performing any of the four basic operations (addition, subtraction, multiplication, and division) on *f* and *g*.

Operation	Definition	Example: $f(x) = 2x$, $g(x) = x + 1$
ADDITION	h(x) = f(x) + g(x)	h(x) = 2x + (x + 1) = 3x + 1
SUBTRACTION	h(x) = f(x) - g(x)	h(x) = 2x - (x + 1) = x - 1
MULTIPLICATION	$h(x) = f(x) \cdot g(x)$	$h(x) = (2x)(x + 1) = 2x^2 + 2x$
DIVISION	$h(x) = \frac{f(x)}{g(x)}$	$h(x) = \frac{2x}{x+1} \qquad X \neq -$

The domain of *h* consists of the *x*-values that are in the domains of both *f* and *g*. Additionally, the domain of a quotient does not include *x*-values for which g(x) = 0.

Let
$$f(x) = 4x$$
 and $g(x) = x - 1$. Perform the indicated operation and state
the domain.
5. $f(x) + g(x)$
6. $f(x) - g(x)$
7. $f(x) \cdot g(x)$
8. $\frac{f(x)}{g(x)}$
6. $f(x) - g(x)$
6. $f(x) - g(x)$
7. $f(x) \cdot g(x)$
8. $\frac{f(x)}{g(x)}$
6. $f(x) - \frac{4x}{x-1}$
9. $h(x) = 4x - (x-1)$
1. $h(x) = 5x - 1$
1. $h(x) = 4x^2 - 4x$
1. $h(x) = 4x^2 - 4x$
1. $h(x) = 5x - 1$
1. $h(x) = 5$

COMPOSITION OF FUNCTIONS

A composition of functions, written $f \circ g$ or f(g(x)), occurs when you input a function into another function.

The result of a composition is a function. Its domain is made up of the values that belong to the range of f and the domain of g.

FINDING THE DOMAIN OF $f \circ g$

 $f \circ g$ or f(g(x))

1) Find the domain of f(x).

2) Set g(x) equal to the value(s) from step 1 and solve.

3) The domain of f(g(x)) is the set of values that was allowed through by g(x) and is allowed through by the function resulting from f(g(x)).

Let
$$f(x) = 3x^{-1}$$
 and $g(x) = 2x - 1$. Find the following.
a. $f(g(x))$ **b.** $g(f(x))$ **c.** $f(f(x))$ **d.** the domain of each composition
a. $f(g(x)) = 3(2x-1)^{-1} = \frac{3}{2x-1}$
b. $g(f(x)) = 3(2x-1)^{-1} = \frac{3}{2x-1}$
c. $g(f(x)) = 2(3x^{-1}) - 1 = 6x^{-1} = \frac{6}{x} - 1$
c. $g(3x^{-1})^{-1} = \frac{3}{3x^{-1}} = x$

Let $f(x) = 3x^{-1}$ and g(x) = 2x - 1. Find the following. **a.** f(g(x)) **b.** g(f(x)) **c.** f(f(x)) **d.** the domain of each composition a) $f(g(x)) = 3(2x-1)^{-1} = \frac{3}{2x-1}$ Domain: $f(y) = \frac{3}{x} - p + x = 0 \quad g(x) = 0$ Dom f(g(x)) is all real numbers except X=1 z (2) $2x - 1 \neq 0$ $2x \neq 1$ $x \neq -1$ $x \neq -1$

Let $f(x) = 3x^{-1}$ and g(x) = 2x - 1. Find the following. **a.** f(g(x)) **b.** g(f(x)) **c.** f(f(x)) **d.** the domain of each composition

b)
$$g(f(x)) = 2(3x^{-1}) - 1 = 6x - 1 = \frac{6}{x} - 1$$

Domain: no restrictions for g
 $f(x)$ has $x \neq 0$ as a restriction

Let $f(x) = 3x^{-1}$ and g(x) = 2x - 1. Find the following. **a.** f(g(x)) **b.** g(f(x)) **c.** f(f(x))**d**. the domain of each composition c) $3(3x^{-1})^{-1} = \frac{3}{3x^{-1}} = x$ Domain: The domain of f(x) excludes x=0, so the domain Of f(f(x)) also excludes x=0.

7.4 INVERSE FUNCTIONS

DEFINITION: INVERSE FUNCTION

INVERSE FUNCTIONS

Functions f and g are inverses of each other provided: f(g(x)) = x and g(f(x)) = x

The function g is denoted by f^{-1} , read as "f inverse."

The domain of the inverse is the range of the original function.

METHODS TO GET THE INVERSE

- •Graphically.
- •From coordinates.
- •Algebraically.

FINDING THE INVERSE GRAPHICALLY

1) Draw the lines y = x.

2) Draw the reflection of the function with respect to lines y = x.

FINDING THE INVERSE FROM COORDINATES

Switch the x and lines y coordinates.

 $f(x) = \begin{cases} x & 1 & -2 & 3 & 10 \\ y & 5 & 2 & 7 & -6 \end{cases}$ $f^{-1}(x) = \begin{cases} x & 5 & 2 & 7 & -6 \\ y & 1 & -2 & 3 & 10 \end{cases}$

$$g(x). \quad (1, 5) (-2, 2) (3, 7)$$
$$g^{-1}(x) (5, 1) (2, -2) (7, 3)$$

FINDING THE INVERSE ALGEBRAICALLY

1) Switch the x and y.

2) Solve for y.

Find an equation for the inverse of the relation y = 2x - 4

find the inverse $f(x) = \frac{1}{2}x^3 - 2$ $x = \frac{1}{2}y^{3} - 2$ $x = y^{3} = 2$ 2·(X+2)-13.2 $3/2x+4=\sqrt{3}$ $V = \sqrt[3]{z_{x+4}}$

VERIFYING THE INVERSE

$$f^{-1}\big(f(x)\big) = f\big(f^{-1}(x)\big) = x$$

To verify that a function is the inverse of another, find $f \circ f^{-1}$. If is equals x, the functions are inverses of each other.

Verify that
$$f(x) = 2x - 4$$
 and $f^{-1}(x) = \frac{1}{2}x + 2$ are inverses.

$$f(f'(x)) = 2(\frac{1}{2}x + 2) - 4 \qquad f^{-1}(f(x)) = \frac{1}{2}(2x - 4) + 2$$

$$= x + 4 - 4 \qquad = x - 2 + 2$$

$$= x$$

$$= x$$

$$They are inverses.$$

7.5 GRAPHING SQUARE ROOT AND CUBE ROOT FUNCTIONS

DOMAIN AND RANGE

 $f(x) = \sqrt{x}$

$$g(x) = \sqrt[3]{x}$$

7.6 SOLVING RADICAL EQUATIONS

STEPS TO SOLVING RADICAL EQUATIONS

1) Solve the equation.

2) Plug solution(s) into original equation to check for extraneous solution.

Solve $\sqrt[3]{x} - 4 = 0$.

Solve $2x^{3/2} = 250$.

Solve $\sqrt{4x - 7} + 2 = 5$.

Solve
$$\sqrt{3x+2} - 2\sqrt{x} = 0$$
.

Solve $x - 4 = \sqrt{2x}$.