' CHAPTER I4: GRAPHING TRIGONOMETRIC FUNCTIONS

What the basic Sine function represents

If you are following a point going around on a circle, sine tracks the y-value of the point.

Demo: https://www.desmos.com/calculator/b8tjkyjesu

What the basic Cosine function represents

If you are following a point going around on a circle, cosine tracks the x-value of the circle.

Demo: https://www.desmos.com/calculator/eouprsrtuc

Graph of $\boldsymbol{y}=\cos \boldsymbol{x}$

Characteristics of basic sine and cosine functions

- Domain: \mathbb{R}
- Range: $-1 \leq y \leq 1$ for basic function.
- Functions are periodic, sine and cosine have a period of 2π.
- Has a max of I and min of $-I$.
- The amplitude is half the distance between the max and min.
- Sine starts at the midline, cosine starts at a max or min.

Graphing basic Sine and Cosine Functions.
*The period controls what you label the α-axis in ${ }^{6}$
$y=\sin (x)$
Period: 2π
Midline: $y=0$
Max line: $y=1$
Min line: $y=-1$
Cycle start: $x=0$
Cycle End: $x=2 \pi$

$y=\cos (x)$
Period: $2 \#$
Midline: $y=0$
Max line: $y=1$
Min line: $y=-1$
Cycle start: $x=0$
Cycle End: $x=2 \pi$

Transformed Sine and Cosine Functions

* h is always the opposite of what you see.

$$
y=a \sin b(x-h)+k \quad y=a \cos b(x-h)+k
$$ make sure that " b " is factored.

a: amplitude
\rightarrow max and min tine \rightarrow start by going up
b: or down.
affects the period.

$$
P=\frac{2 \pi}{|b|}
$$

h: horizontal shift/ phase shift \rightarrow where you start
k: vertical shift \rightarrow midlhe

Steps to Graph Transformed Sine and Cosine Functions

1) Determine the period: $P=\frac{2 \pi}{|b|}$. Use it to label the x -axis.
2) Determine the midline: $y=k$ and draw it.
3) Determine the max and min lines: $y=k+a$ and $y=k-a$ and draw them.
4) Determine starting point: $(0+h, k)$ for sine and $(0+h, k \pm a)$ for \cos (do this visually).
5) Draw the point one period later.
6) Figure out if you are going up or down first. Draw the midperiod and quarter $/ 3$-quarter period points.
7) Draw the curve.

Graphing Sine and Cosine functions with amplitude change

$$
y=2 \sin (x)
$$

$a=2$
Period: 2π
$h=0$
Midline: $y=0$
Max line: $y=2$
Min line: $y=-2$
Cycle start: $x=0$
Cycle End: $x=2 \pi$

$y=-2 \cos (x)$
Period: 2π
Midline: $y=0$
Max line: $y=2$
Min line: $y=-2$
Cycle start: $x=0$
Cycle End: $x=2 \pi$

$$
\begin{aligned}
& a=-2 \\
& b=1
\end{aligned}
$$

$$
h=0
$$

$$
k=0
$$

start at amin
(because of the negartic)

Graphing Sine and Cosine functions with period change

$$
\begin{array}{ll}
y=\sin (2 x) & b=1 \\
\text { Period: } \frac{2 \pi}{2}=\pi & h=2 \\
\text { Midline: } y=0 & k=0 \\
\text { Max line: } y=1 & \\
\text { Min line: } y=-1 & \\
\text { Cycle start: } x=0 & \\
\text { Cycle End: } x=\pi &
\end{array}
$$

$y=\cos (\pi x)$
Period:
Midline:
Max line: $y=1$
Min line: $y=-1$
Cycle start: $\bar{x}=0$ (max)
Cycle End: $x=2$

$$
\begin{aligned}
& a=1 \\
& b=\pi \\
& h=0 \\
& k=0
\end{aligned}
$$

Graphing Sine and Cosine functions with vertical shift

$$
\begin{array}{ll}
y=\sin (x)+3 & b=1 \\
\text { Period: } 2 \pi & h=0 \\
\text { Midline: } y=3 & k=3 \\
\text { Max line: } y=4 & \\
\text { Min line: } y=2 & \\
\text { Cycle start: } x=0 \text { (midline) } \\
\text { Cycle End: } x=2 \pi &
\end{array}
$$

$y=\cos (x)-2$
Period: 2π
Midline:
Max line: $y=-1$
Min line: $y=-3$
Cycle start: $x=0$ (max)
Cycle End: $x=2 \pi$

Graphing Sine and Cosine functions with phase shift

$$
y=\sin \left(x-\frac{\pi}{2}\right)
$$

$a=1$
Period: 2π
Midline: $y=0$ $h=\frac{\pi}{2}$

Max line: $y=1$
Min line: $y=-1$
Cycle start: $x=\frac{\pi}{2}$ (midline)
Cycle End: $2 \pi+\frac{\pi}{2}$

$y=\cos (x+\pi)$
Period: 2π
Midline: $y=0$
Max line: $y=1$
Min line: $y=-1$
Cycle start: $x=-\pi(\max)$
Cycle End: $x=\mathbb{T}$

$$
a=1
$$

$$
b=1
$$

$$
h=-\pi
$$

$$
k=0
$$

Graphing Sine and Cosine functions - all parameters

$$
y=-3 \sin _{2 \pi} 0.5\left(x-\frac{\pi}{2}\right)+1
$$

$$
\begin{aligned}
& a=-3 \\
& b=0.5
\end{aligned}
$$

Period: $\frac{2 \pi}{0.5}=4 \pi$
Midline: $y=1$
Max line: $y=4$
Min line: $y=-2$
Cycle start: $\frac{\pi}{2}$ (midline, start going Cycle End: $4 \pi+\frac{\pi}{2}$

$$
y=+\cos \pi(x+2)-2
$$

$$
b=\pi
$$

Period: $\frac{2 \pi}{T}=2$ $h=-2$

Midline: $y=-2$
Max line: $y=-1$
Min line: $y=-3$
Cycle start: -2 (max)
Cycle End:

What the basic Tangent function represents

If you are following a point going around on a circle, tangent tracks the ratio of the y-value over the x-value of the point.

Demo: https://www.desmos.com/calculator/n9aeestsd8

Characteristics of sine and cosine functions

$$
y=a \tan b(x-h)+k
$$

- Period is $\frac{2 \pi}{|b|}$
- Vertical asymptotes at odd multiples of $\frac{\pi}{2|b|}$.

