CHAPTER 8

Exponential and Logarithmic functions

Basic exponential function

$$
\begin{aligned}
& f(x)=b^{x} \\
& y=0
\end{aligned}
$$

- It has a horizontal asymptote because it will never reach zero, no matter what x-value you put in the function. asymptote $=$ a line that a function gets infinitely close to but never touches.

Growth vs. Decay Growth Punction Graph $f(x)=2^{x}$

x	$f(x)=2^{x}$
-3	$2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$
-2	$z^{-2}=\frac{1}{z^{2}}=\frac{1}{4}$
-1	$z^{-1}=\frac{1}{2}$
0	$z^{0}=1$
1	$z^{1}=2$
2	$z^{2}=4$
3	$z^{3}=8$

Growth vs. Decay
Decay
Graph $f(x)=\left(\frac{1}{2}\right)^{x}$
$-3\left(\frac{1}{2}\right)^{-3}=2^{3}=8$
$-2\left(\frac{1}{2}\right)^{-2}=2^{2}=4$
$-1 \quad\left(\frac{1}{2}\right)^{-1}=2=2$

- $\left(\frac{1}{2}\right)^{0}=1$

1 $\left(\frac{1}{2}\right)^{\prime}=1 / 2$
$2\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
$3\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$

Growth vs. Decay
Growth

- Base bol - Base $0<b<1$
- Approaches the . Approaches the
asymptote on asymptote on the
the left.
right.

Steps for graphing $f(x)=a \cdot b^{(x-h)}+k$

1) Create a table of values for the basic functions, using 1,0 , and 1 for x.

2) Apply the transformations using a, h, and k to get the actual points and create a new table of values.

$$
\begin{array}{ll}
x \rightarrow x+h & \text { Dom: } \mathbb{R} \text { all real numbers } \\
y \rightarrow a y+k & \text { Range: }]-\infty, k[\text { or }] k,+\infty[
\end{array}
$$

3) Draw the asymptote $y=k$

Parameters " h " and " k " $f(x)=a \cdot b^{(x-h)}+k$

> Parameters " P "" and " k " $\quad f(x)=a \cdot b^{(x-h)}+k$ $y=-3\left(\frac{1}{2}\right)^{x+2} \mp 1$

Exponential to represent growth or decay.

When a real-life quantity increases by a fixed percent each year, the quantity can be modeled by:

$$
y=\underline{a}(1+\underline{r})^{\underline{t}}
$$

$a=$ initial value at time $t=0$
For decay: $\underline{y}=\underline{a}(1-r) \underline{t}$
t = time gone by
$r=$ rate of increase or decrease.
In percent:
50% more $\rightarrow 150 \%$ of initial $y=$ value at time t
20% off $\rightarrow 80 \%$ of initial value

INTERNET HOSTS In January, 1993, there were about $1,313,00^{2}$ Internet hosts. During the next five years, the number of hosts increased by about 100% per year. Source: Network Wizards
a. Write a model giving the number h (in millions) of hosts t years after 1993. About how many hosts were there in 1996 ?
b. Graph the model.

$$
L_{0} t=3
$$

c. Use the graph to estimate the year when there were 30 million hosts.
b)

$$
\begin{array}{l|l}
t & h \\
\hline 0 & 1.313 \\
1 & 2.626 \\
3 & 10.504 \\
4 & 21.008
\end{array} \quad h=1.313 \cdot 2^{\prime}=2.626
$$

c) $4.5-5$ y os.

GROWTH

$$
\begin{aligned}
& y=a(1+r)^{t} \\
& \text { a) } h=1.313(1+1)^{t} \\
& h=1.313 \cdot 2^{t} \\
& 1996: t=3 \quad h=1.313(2)^{3} \\
& h=10.504 \mathrm{M}
\end{aligned}
$$

You buy a new car for $\$ 24,000$. The value y of the car decreases by 16% each year.
a. Write an exponential decay model for the value of the car. Use the modern estimate the value after 2 years.
b. Graph the model.
c. Use the graph to estimate when the car will have a value of $\$ 12,000$.
a)

$$
\begin{aligned}
& y=24000(1-0.16)^{t} \\
& y=24000(0.84)^{t}
\end{aligned}
$$

at $t=2 y r s$

$$
y=24000(0.84)^{2}=16934.40
$$

b)

x	y
0	24000
1	20160
2	16934.40
3	14245

c) about 4 years.

Compound interest

COMPOUND INTEREST

Consider an initial principal P deposited in an account that pays interest at an annual rate r (expressed as a decimal), compounded n times per year. The amount A in the account after t years can be modeled by this equation:

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$$
\begin{aligned}
& n=\# \text { of times that } \\
& \text { interest is compounded }
\end{aligned}
$$

$P=$ initial value

FINANCE You deposit $\$ 1000$ in an account that pays 8% annual interest. Find the balance after 1 year if the interest is compounded with the given frequency.
a. annually
b. quarterly
c. daily

$$
\begin{aligned}
& A=1000\left(1+\frac{0.08}{1}\right)^{1 \cdot t} \\
& A=1000(1.08)^{t} \quad A=1000\left(1+\frac{0.08}{4}\right)^{2} \\
& t=1
\end{aligned}
$$

$$
\begin{aligned}
& 4 t \quad r=0.08 \\
& A=1000\left(1+\frac{0.08}{365}\right)^{365 t} 365 t \\
& A=1000(1.000219178)^{365 t} \\
& t=1 \\
& A=1083.28
\end{aligned}
$$

ACTIVITY

Developing Concepts

Investigating the Natural Base \boldsymbol{e}

(1) Copy the table and use a calculator to complete the table.

n	10^{1}	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}
$\left(1+\frac{1}{n}\right)^{n}$	2.594	$2.705^{2.717}$	2.718	2.718	2.718	
$\left(1+\frac{1}{10^{2}}\right)^{10^{2}}$						

(2) Do the values in the table appear to be approaching a fixed decimal number? If so, what is the number rounded to three decimal places?

THE NATURAL BASE e

The natural base e is irrational. It is defined as follows:

$$
\text { As } n \text { approaches }+\infty,\left(1+\frac{1}{n}\right)^{n} \text { approaches } e \approx 2.718281828459
$$

Graphing $f(x)=a e^{\wedge x} \quad e^{-x}=\left(\frac{1}{e}\right)^{x}$

- Look at " r " to determine if the function is growth or decay. \qquad
- Use the same table of values
- $e=2.718$ and $\frac{1}{e}=0.368$

\mathbf{x}	-1	0	1
\mathbf{y}	$1 / \mathrm{b}$	1	b

Graph the function. State the domain and range.
decary because it vields
$=e^{-0.5(x-2)}+1 \times \frac{x}{4}-10 / 2$
asymptote $\frac{x}{4} 5.4 \times 3.7 \div 2$

a. $y=2 e^{0.75 x} \quad$| x | -1 | 0 | 1 |
| :--- | :--- | :--- | :--- |
| y | 0.94 | 2 | 14.23 |

Use of e in real life

- Recall from 8.1, we can calculate compound interest using the formula $A=P\left(1+\frac{r}{n}\right)^{n t}$.
- When we compound interest continuously, the same formula yields $A=P e^{r t}$.

$$
\begin{aligned}
& P=\text { initial value } \\
& m=\text { rate } \\
& t=\$ \text { yeas gone by, }
\end{aligned}
$$

You deposit $\$ 1000$ in an account that pays 8% annual interest compounded continuously. What is the balance after 1 year?

$$
\begin{aligned}
& P=1000 \\
& r=8 \%=0.08 \\
& A=? \\
& t=1 y r
\end{aligned}
$$

Continuous Compounding You deposit $\$ 975$ in an account that pays 5.5% annual interest compounded continuously. What is the balance after 6 years?

$$
\begin{array}{ll}
P=\$ 975 & A=P e^{r t} \\
r=5.5 \%=0.055 & A=975 e^{0.055(6)} \\
t=6 \mathrm{yrs} & A=\$ 1356.19
\end{array}
$$

Solve the following equations:

$$
\begin{array}{ll}
2^{x}=32 & 3^{x}=9 \\
2^{x}=2^{5} & 3^{x}=3^{2} \\
x=5 & x=2 \\
& \\
3^{x}=\frac{1}{27} & 5^{x}=125 \\
3^{x}=(27)^{-1} & 5^{x}=5 \\
3^{x}=\left(3^{3}\right)^{-1} & x=3 \\
3^{x}=3^{-3} \longrightarrow x=-3 &
\end{array}
$$

Definition: Logarithms

Logarithms are the inverse of exponentials. They answer the question "to what power gives l^{2} "

Logarithmic form

$$
\begin{array}{c|c}
\log _{5} a=x & b^{x}=a \\
\log _{5} 625=x & 5^{x}=625 \\
\log _{35} 8=x & 35^{x}=8 \\
\hline \log _{7} 49=x & 7^{x}=49 \\
\log _{5} 100=x & 5^{x}=100
\end{array}
$$

Special log values

SPECIAL LOGARITHM VALUES

Let b be a positive real number such that $b \neq 1$.
LOGARITHM OF 1
$\log _{b} 1=0$ because $b^{0}=1$.
LOGARITHM OF BASE b

$$
\log _{b} b=1 \text { because } b^{1}=b
$$

Evaluate the expression.
a. $\log _{3} 81=x$

$$
\begin{aligned}
& 3^{x}=81 \\
& 3^{4}=81 \\
& x=4
\end{aligned}
$$

c. $\log _{1 / 2} 8$
$\log _{1 / 2}\left(\frac{1}{2}\right)^{-3}$ $\log _{\frac{1}{2}} 8=-3$

To what bower do I raise the base to obtain what is inside the
b. $\log _{5} 0.04=x$ logarithm?
$\log _{5} \frac{1}{25}-15^{x}=0.04$ $\log _{5}(25)^{-1}$ $\log _{5} 5^{-2} \rightarrow \log _{5} 0.04=-2$ d. $\log _{9} 3 \quad \sqrt{a}=a^{1 / 2}$ $\sqrt{9}=3$

$$
\log _{9} \sqrt{9}
$$

$$
\log _{9} 3=\frac{1}{2}
$$

$\log _{b} x^{x}$ b is the base Common and natural logs

COMMON LOGARITHM

$$
\log _{10} x=\log x
$$

$$
\text { R } 10 \text { does not }
$$

need to be written

$$
\sqrt{x}=\sqrt[2]{x}
$$

$$
\frac{2 x}{2}=\frac{4}{2}
$$

Exponential and log as inverse $x=2$

$$
f(x)=b^{*} \quad g(x)=\log _{b} x
$$

$g(f(x)) \log _{b} b^{x}=x$

$$
f(g(x))=b^{\log _{b} x}=x
$$

Simplify the expression.
a. $10^{\log _{4} 2}$ b. $\log _{3} 9^{x}$
$\log _{3}\left(3^{2}\right)^{x}$
$\log _{3} 3^{2 x}=2 x$

2

Exponential and log as inverse

Graphs of \boldsymbol{f} and $\boldsymbol{f}^{\mathbf{- 1}}$ for $\boldsymbol{b}>\mathbf{1}$

Graphs of \boldsymbol{f} and \boldsymbol{f}^{-1} for $\mathbf{0}<\boldsymbol{b}<\mathbf{1}$

Basic logarithmic function

$$
f(x)=\log _{b} x
$$

- It has a vertical asymptote because zero exponential functions had horizontal asymptote $\rightarrow \log$ function will have a vertical asy mptote.
Dom and range are switched.
Dom: $] h,+\infty[$ on $J-\infty, h F$ Ran: R (all real numbers)

Effect of "b" $\quad \operatorname{Graph} f(x)=\log _{\frac{1}{2}} x$

x	$f(\theta)=8 \log _{\frac{1}{2}} x$	
$b_{1 / 2}$	1	
1	1	0
$\frac{1}{b}$	2	-1

$a \ll 1$ the function
approaches the asymp at the top,

Steps for graphing $f(x)=a \log _{b}(x-h)+k$

1) Create a table of values for the basic functions, using 1,0 , and 1 for x.

x	$1 / b$	1	b
y	-1	0	1

2) Apply the transformations using a, h, and k to get the actual points and create a new table of values.

$$
\begin{aligned}
& x \rightarrow x+h \\
& y \rightarrow a y+k
\end{aligned}
$$

Parameters " h " and " k " $\log _{1 / 3}\left(x-\frac{1}{2}\right) h$

$$
y=\log _{1 / 3}(x)-1
$$

base function $y=\log _{\frac{1}{3}} x$

$$
\begin{array}{c|c|c|c|}
x & 3 & 1 & \frac{1}{3} \\
\hline y & -1 & 0 & 1
\end{array}
$$

transformation

$$
\begin{array}{c|c|c|c}
x & 3 & 1 & \frac{1}{3} \\
\hline y & -2 & -1 & 0
\end{array}
$$

asymptote $x=0$

Parameters " h " and " k

$$
y=\log _{5}(x+2)
$$

base function $4=\log _{5} x$

$$
\begin{array}{l|l|l|l}
x & \frac{1}{5} & 1 & 5 \\
\hline y & -1 & 0 & 1
\end{array} n=-2
$$

x	-1.8	-1	3
y	-1	0	1
asymp tote	$x=-h$		

Properties of logarithms

PROPERTIES OF LOGARITHMS

Let b, u, and v be positive numbers such that $b \neq 1$.
exp $\log _{2}(2 x)$

$$
=\log _{2} 2+\log _{2} x
$$

PRODUCT PROPERTY
QUOTIENT PROPERTY
POWER PROPERTY

$$
\log _{b} \sqrt{u v}=\log _{b} u+\log _{b} v
$$

Use $\log _{5} 3 \approx 0.683$ and $\log _{5} 7 \approx 1.209$ to approximate the following.

a. $\log _{5} \frac{3}{7}$ $=\log _{5} 3-\log _{5} 7$ $=0.683-1.209$ $=-0.527$	b. $\log _{5} 21$ $=\log _{5}(3 \times 7)$ $=\log _{5} 3+\log _{5} 7$ $=0.683+1.209$ $=1.892$
	$=2 \cdot \log _{5} \log _{5} 7$
	$=2.1 .209$
c. $\log _{5} 49$	

Expanding logs everything inside the log is either
you know you are "done" when a variable wi l ho exponents or Expand $\log _{2} \frac{7 x^{3}}{y}$. Assume x and y are positive.a prime number.

$$
\begin{aligned}
& \log _{2} \frac{7 x^{3}}{y}=\log _{2}\left(7 x^{3}\right)-\log _{2} y=\log _{2} 7+\log _{2}(3)-\log _{2} y \\
& =\log _{2} 7+3 \log _{2} x-\log _{2} y \\
& \ln 3 x y^{3} \\
& \ln 3+\ln x+\ln y^{3} \\
& \ln 3+\ln x+3 \ln y \\
& \begin{array}{l}
\log _{8} 64+4 \log _{8} x^{(2)} \\
\log _{8} 8\left(B+2 \log _{8} x\right.
\end{array} \\
& \begin{array}{l}
2 \log _{8} 8+2 \log _{8} x \\
2 \log _{8} 2^{0}+2 \log _{8} x
\end{array}
\end{aligned}
$$

Condensing logs

$$
\begin{aligned}
& \text { Condense } \log 6+(2) \log 2-\log 3 .=\log 6+\log 2-\log 3 \\
&=\log (6 \cdot 2)-\log 3 \\
&=\log \left(\frac{6 \cdot 2}{3}\right)=\log 4 \\
&(7) \log _{4} 2^{2}+5 \log _{4} x+\left(3 \log _{4} y\right. \left.\begin{array}{l}
3(\ln 3-\ln x)+(\ln x-\ln 9) \\
\log _{4} 2^{7}+\log _{4} x^{5}+\log _{4} y^{3} \\
\log _{4}\left(2^{7} \cdot x^{5} \cdot y^{3}\right.
\end{array} \right\rvert\, \begin{array}{l}
3 \ln 3-3 \ln x^{3}+\ln x-\ln 9 \\
\left.\ln ^{3}-\ln x^{3}\right)+\ln x-\ln 9 \\
\log _{4}\left(2^{7} x^{5} y^{3}\right)
\end{array} \\
& \begin{array}{l}
\ln \left(\frac{3^{3}}{x^{3}}\right)+\ln \left(\frac{x}{9}\right) \\
\ln \left(\frac{3^{3}}{x^{3}} \cdot \frac{y}{9}\right)=\ln \left(\frac{3}{x^{2}}\right) 42
\end{array}
\end{aligned}
$$

Change of base

CHANGE-OF-BASE FORMULA

Let u, b, and c be positive numbers with $b \neq 1$ and $c \neq 1$. Then:

In particular, $\log _{c} u=\frac{\log u}{\log c}$ and $\log _{c} u=\frac{\ln u}{\ln c}$.

$$
\log _{C}\left(y=\frac{\log _{b} 4 U}{\log _{b} C}\right.
$$

b

$$
\log _{2} 3=\frac{\log 3}{\log 2}
$$

This property is useful to plug in logarithms in your calculator, which only has the natural and common logarithms.

Change of base proof (not on test)

$$
\log _{a} x=y
$$

logarithmic form
$a^{y}=x$ exponential form

$$
\begin{aligned}
& \log _{b} a(x) \\
& y \log _{b} x \\
& \frac{\log _{b} a}{\log _{b} a}=\frac{\log _{b} x}{\log _{b} a} \\
& y=\frac{\log _{b} x}{\log _{b} a}
\end{aligned} \quad \log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

Using the change of base formula
Evaluate the expression $\log _{3} 7$ using common and natural logarithms.

$$
\left.\log _{3} 7=\frac{\log 7}{\log 3}=1.77 \right\rvert\, \log _{3} 7=\frac{\ln 7}{\ln 3}=1.77
$$

$\log _{7} 12$

$$
\log _{7} 12=\frac{\log _{7} 12}{\log 7}=1.277 \cdot \frac{\ln 12}{\ln 7}=1.277
$$

Types of equations

Exponential

(1) \rightarrow Same base, or can get \rightarrow Both sides have log to the same base.
(3) \rightarrow Different base.

Use logarithms

Logarithmic

 with same base.\rightarrow Only one side has a log. Use exponents.

$$
2 \times x=2 \times 5
$$

Equal powers property $x=5$

For $b>0$ and $b \neq 1$,
if $b^{x}=b^{y}$, then $x=y$

Ex: If $3^{x}=3^{5}$ then $x=5$

Exponential equations: Same base Examples:

Recap: Solving exponential equations

1. Rewrite both sides of the equation with a common base. (if needed
2. Set the exponents on each side equal to each other.
3. Solve the equation.
4. Check your answer.

Equal logarithms property

For positive numbers b, x and y where

$$
b \neq 1,
$$

$\log _{b} x=\log _{b} y$ if and only if $x=y$
$\mathrm{Ex}: \log _{3} x=\log _{3} 5$ if and only if $x=5$

Quotient properly
Log equations: same base $\log _{b} x-\log _{b y}$
Examples: ${ }^{\log \text { bose on both sides }}$

$$
\begin{array}{rl}
\log _{3}(2 x+4)=\log _{3}(3 x+3) & \log _{5}(3 x-4)-\log _{5}(x)=\log _{5}(2) \\
2 x+4=3 x+3 & \log _{5}\left(\frac{3 x-4}{x}\right)=\log _{5} 2 \\
-2 x-2 x & x=\frac{3 x-4}{}=2 \cdot x \\
-3=x+3 & \begin{aligned}
x & =2 x \\
1 & =x
\end{aligned} \\
& -3 x-4 \\
& =-3 x \\
-4 & =-x \\
4 & =x
\end{array}
$$

Recap: Solving Logarithmic equations

1. Rewrite both sides of the equation as one log with common base.
2. Set the insides of the log on each side equal to each other.
3. Solve the equation.
4. Check your answer - remove extraneous solutions.

$$
\log _{b} b^{x}=x
$$

Exponential equations: different base Examples:

$$
\left.\begin{array}{cc}
2^{x}=20 & 5^{2 x-3}=16 \\
\log _{2} 2^{x}=\log _{2} 20 & \log _{5} 5^{2 x-3}=\log _{5} 16 \\
x=\log _{2} 20 & 2 x-3=\log _{5} 16 \\
x=\frac{\log _{20} 20}{\log _{2}} & 2 x=\log _{5} 16+3 \\
x=4.32 & x=\frac{\log _{5} 16+3}{2} \\
x=\frac{\left(\log _{16} 16\right.}{\log 5}+3
\end{array}\right) x=2.36 .
$$

Recap: Solving exponential equations with different bases.

1. Take the common log of both sides.
2. Use the power rule to bring the exponent down.
3. Solve the equation.
4. Check your answer.

$$
b^{\log _{b} t}=x
$$

Log equations: log on one side only.
Examples:

$$
\begin{array}{cl}
\log _{2}(4 x+3)=3 & \left(2 \log _{3}(2 x+1)=4\right. \\
2^{\log _{2}(4 x+3)}=2^{3} & \log _{3}(2 x+1)^{2}=4 \\
4 x+3=8 & \operatorname{lag}_{3}(2 x+1)^{2}=3^{4} \\
-3 & (2 x+1)^{2}=81 \\
\frac{4 x}{4}=\frac{5}{4} & 4 x^{2}+4 x+1=81 \\
x=\frac{5}{4} & 4 x^{2}+4 x-80=0 \\
x^{2}+x-20=0 \\
(x+5)(x-4)=0 x=-5 x=4
\end{array}
$$

Extraneous Solutions $2 \log (2 x+1)=4$ cannot be negate.

$$
x=-5 \quad x=4
$$

$$
\begin{array}{ll}
2(-5)+1 & 2(4)+1 \\
-10+1 \\
-9
\end{array} \quad \frac{9}{\text { solution }} \quad \text { solution } x=4
$$

Recap: Solving Logarithmic equations

1. Exponentiate both sides.
2. Solve the equation.
3. Check your answer - remove extraneous solutions.
