

Inscribed Anale

angle \rightarrow arc: multiply by 2 arc \rightarrow angle divide by 2 Measure of inscribed angles

Words: The degree measure of an inscribed angle equals onehalf the degree measure of its intercepted arc.

Model:
Theorem 14-1

If $m \widehat{F H}=58$, find $m \angle F G H$.

In the game shown at the right, $\triangle W P Z$ is equilateral. Find $m \overline{W Z}$.

$$
\begin{aligned}
m W & =2 \times m \angle W P Z \\
& =2.60=120^{\circ}
\end{aligned}
$$

c. If $m \widehat{J K}=80$, find $m \angle J M K$.
d. If $m \angle M K S=56$, find $m \overline{M S}$.

$$
80 \div 2=40 \quad 56 \times 2=112
$$

$m)_{k}=2=m \angle U m K \quad m m_{2}=m \angle M K S 2$
$80 \div 2=m<3 m k$
$m M=56 \cdot 2$
$40=m<J m k$
$\rightarrow 1 M_{2}=112$

Congruent inscribed angles

Words: If inscribed angles intercept the same arc or congruent arcs, then the angles are congruent.

Model:

$$
\text { so } \angle 1 \cong \angle 2
$$

In $\odot A, m \angle 1=2 x$ and $m \angle 2=x+14$. Find the value of x.

$$
\begin{gathered}
\angle 1 \cong \angle 2 \\
2 x=x+14 \\
x=14
\end{gathered}
$$

In $\odot J, m \angle 3=3 x$ and $m \angle 4=2 x+9$. Find the value of x.
$\angle 3 \cong \angle 4$
(they inter copt
the same ard.

$$
\begin{gathered}
3 x=2 x+9 \\
x=9
\end{gathered}
$$

Inscribed right triangles

Words: If an inscribed angle of a circle intercepts a semicircle, then the angle is a right angle.

Theorem 14-3

Model:

If an inscribed angle lintercepts a semicircle, then it

In $\odot T, \overline{C S}$ is a diameter. Find the value of x.

$$
\begin{gathered}
90+\left(\frac{1}{2} x+13\right)+(4 x-13)=180 \\
4.5 x+90=180 \\
4.5 x=90 \\
x=20^{\circ}
\end{gathered}
$$

In $\odot K, \overline{G H}$ is a diameter and $m \angle G N H=4 x-14$. Find the value of x.

$$
\begin{gathered}
4 x-14=90 \\
4 x=104 \\
x=26
\end{gathered}
$$

$$
4 x-14
$$

14.1 Recap

- Inscribed angles have their vertex on the circle and sides contained in the circle.
-The inscribed angle measure is half the arc it intercepts.
- Inscribed angles are congruent if they intercept the same arc.
- Inscribed right triangles intercept semicircles.
正

Tangents

A tangent touches a circle

 at exactly one point.$\begin{aligned} \text { Words: } & \text { In a plane, a line is a tangent } \\ & \text { a circle in exactly one point. }\end{aligned}$
Model:

Symbols: Line ℓ is tangent to $\odot P$. T is called the point of tangency.

Words: In a plane, if a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is a tangent.

Symbols: If $\overline{A B} \perp \ell$, then ℓ is tangent to $\odot A$ at point B.
$\overline{T D}$ is tangent to $\odot K$ at T. Find $K D$.

$$
\begin{aligned}
& K D^{2}=9^{2}+12^{2} \\
& K D^{2}=81+144 \\
& K D^{2}=225 \\
& K D=\sqrt{225}=15
\end{aligned}
$$

$\overrightarrow{Q R}$ is tangent to
$\odot P$ at R. Find $R Q$.

$$
\begin{aligned}
& 20^{2}=12^{2}+R Q^{2} \\
& 400-144=R Q^{2} \\
& 256=R Q^{2} \\
& R Q=\sqrt{256}=16
\end{aligned}
$$

Words: If two segments from the same exterior point are tangent to a circle, then they are congruent.

Model:
Theorem 14-6

Ice cream cone

$\overline{B E}$ and $\overline{B R}$ are tangent to $\odot K$. Find the value of x.

$$
\begin{gathered}
\overline{B E} \cong \overline{B R} \\
2 x-13=47 \\
2 x=60 \\
x=30
\end{gathered}
$$

(Ice cream cone)
6. $\overline{J T}$ is tangent to $\odot S$ at T.

Find $S J$ to the nearest tenth

$$
\begin{aligned}
& S J^{2}=10.5^{2}+8^{2} \\
& S J^{2}=110 \cdot 25+64 \\
& S J^{2}=174.25 \\
& S J=13.2
\end{aligned}
$$

7. $\overline{Q A}$ and $\overline{Q B}$ are tangent to $\odot O$.

$$
\begin{gathered}
25^{2}=7^{2}+Q B^{2} \\
625=49+Q B^{2} \\
576=Q B^{2} \\
24=Q B
\end{gathered}
$$

Recap

- Tangent lines to a circle touch it in exactly one place.
- Tangents are perpendicular to the radius / diameter they intersect. Lines perpendicular to radii are tangents to a circle.
- Two segments that are tangent to a circle and passing through the same point are congruent.

Secant segments

Secants intersect a circle in two places.

Secant Angles
 - Secant Angles are formed when two or more secants segments intersect.

| Case 1 |
| :--- | :--- |
| Vertex On the Circle |\quad| Case 2 |
| :---: |
| Vertex Inside the Circle |\quad| Vertex Outside the Circle |
| :--- |

Secant Angle-Arc Relationships Intersedion is inside Intersection is cutside

$m \angle 1=\frac{m \widehat{A M}+m \widehat{H T}}{2}$

$$
m \angle A=\frac{m \widehat{C E}-m \widehat{B D}}{2}
$$

$m \angle C=\frac{m A E}{2}$	
$m \angle c=\frac{68-22}{2}$	$m \angle K=\frac{m \overparen{H L}-m A R}{2}$
$m \angle C=\frac{46}{2}=23^{\circ}$	$2.50=\frac{m H L-30}{2} \cdot 2$
$100=m H L-30$	
$1300^{\circ}=m \overparen{H L}$	

Recap

- Secant angles are formed when secants intersect in a circle.
- There is a relationship between the angle measures and the measures of the intercepted arcs (see previous slide for equations).

