

Secant-Tangent Angles

- Secant-Tangent Angles are formed when a secant segment and a tangent intersect.

Case 1	
Vertex Outside the Circle	Case 2
Vertex On the Circle	

Secant-Tangent Angle-Arc Relationships

Same relationship as when two secants meet outside the circe. $m \angle P Q R=\frac{m \overline{P R}-m \overline{P S}}{2}$

same relationship as inscribed angles.
$m \angle A B C=\frac{m A B}{2}$
$\overline{C R}$ is tangent to $\odot T$ at C. If $m \overline{C D N}=200$, find $m \angle R$.
$m \angle R=\frac{m \overparen{C D N}-m M_{C}}{2}$
$m \angle R=\frac{200-50}{2}=75^{\circ}$

$\overrightarrow{B A}$ is tangent to $\odot P$ at B. Find $m \angle A B C$.
$m \angle A B C=\frac{m \widehat{B C}}{2}$
$m \angle A B C=\frac{100}{2}=50^{\circ}$

Tangent-Tangent Angles

- Tangent-Tangent Angles are formed when two tangents intersect.

$$
m \angle E T S=\frac{m \widehat{E C S}-m \widehat{E S}}{2}
$$

Find $m \angle A$.

Angle is outside the circle $m \angle A=\frac{m K E T-m K T}{2}$

$$
m \angle A=\frac{250-110}{2}=70^{\circ}
$$

$m<Q=\frac{245-115}{2}$
$m \angle Q=65^{\circ}$

Recap

- Secant-tangent angles are formed when a secant and a tangent intersect on or outside a circle.
- There is a relationship between the angle measures and the measures of the intercepted arcs (see previous slide for equations).

Recap

- Fill in the angle and Arc Relationships in Circles table

Segment Measures Relationships

$(\underline{F E})^{2}=\underline{F H} \cdot \underline{F G}$
$\underline{T E} \cdot E A=\underline{R E} \cdot \underline{E P}$

$E T \cdot E A=E R \cdot E P$

In $\odot P$, find the value of x.
In $\odot C$, find $U W$.

$$
\begin{aligned}
& E J \cdot E M=E L \cdot E Q \\
& 3 \cdot 4=x \cdot 6 \\
& 12=6 x \\
& 2=x
\end{aligned}
$$

$$
\begin{aligned}
& w \pi \cdot w V=w s \cdot w l \\
& 1 \cdot 15=6(x+1) \\
& 15=6 x+6 \\
& -6 \\
& 9=6 x \\
& 1.5=x
\end{aligned}
$$

Find $A V$ and $R V$.
(b. Find the value of x tc
(c.) Find $M N$ to the nearest
b) 6 tent. 111$)=5,7(x+5.70$
$66=5.7 x+32.49$
$33.51=5.7 x$
$5.88=x$

$$
\begin{aligned}
& A B \cdot A C=A R \cdot R V \\
& 3 \cdot 12=4(x+4) \\
& 36=4 x+16 \\
& 20=4 x \\
& 5=x \\
& R V=5 \quad A V=9
\end{aligned}
$$

Find the value of x to the nearest tenth.

$$
\begin{aligned}
& x^{2}=10 \cdot 20 \\
& x^{2}=200 \\
& x=\sqrt{200}=2 \sqrt{10} \\
& =14.1
\end{aligned}
$$

Recap

- There are relationships between the measures of segments created when secants and tangents intersect in or outside a circle.
- See previous slide for equations.

Equation of a circle

coordinates of the

$$
\left(x-\underset{\substack{x-c o r d n d a t e \\ \text { of center }}}{h)^{2}+(y-k)^{2}=r^{2} \text {-cooridnate }}\right. \text { of center }
$$

Write an equation of a circle with center $C(-1,2)$ and a radius of 2 units.

$$
\begin{aligned}
& h=-1 \\
& k=2 \\
& r=2 \\
& (x-(-1))^{2}+(y-2)^{2}=2^{2} \\
& (x+1)^{2}+(y-2)^{2}=4
\end{aligned}
$$

Write an equation of a circle with center at $(3,-2)$ and a diameter of 8 units. $r=4 \quad h=3 \quad k=-2$

$$
\begin{aligned}
& (x-3)^{2}+\left(y-(-2)^{2}=4^{2}\right. \\
& (x-3)^{2}+(y+2)^{2}=16
\end{aligned}
$$

Find the coordinates of the center and the measure of the radius of a circle whose equation is $x^{2} \frac{1}{\frac{1}{2}}\left(y-\frac{3}{4}\right)^{2}=\frac{25}{4}$.

$$
\begin{aligned}
& h=0 \quad(x-0)+\left(y-\frac{3}{4}\right)^{2}=\frac{25}{4} \\
& k=\frac{3}{4} \\
& r=\sqrt{\frac{25}{4}}=\frac{5}{2}=2.5 \quad c\left(0, \frac{3}{4}\right) \quad r=2.5 \\
& (x-7)^{2}+(y+5)^{2}=4 \\
& h=7 \\
& k=-5 \\
& r=\sqrt{4}=2
\end{aligned}
$$

Graph each equation on a coordinate plane.

26. $(x+5)^{2}+(y-2)^{2}=4$
$c(-5,2) r=2$

27. $x^{2}+(y-3)^{2}=16$
$c(0,3) \quad r=4$

