CHAPTER I3 - RIGHT TRIANGLES AND TRIGONOMETRY

I3.I - SIMPLIFYING SQUARE ROOTS

DEFINITION: SQUARE ROOTS

Square roots are the inverse of squaring. They answer the question "what number

Parts of a Radical

 squared gives \qquad ?"Ex: $\sqrt{4}=2$ because $2^{2}=4$

Simplify each expression. (1) $\sqrt{49}$

$$
\text { (2) } \sqrt{64}
$$

a. $\sqrt{25}$
b. $\sqrt{144}$

SIMPLIFYING SQUARE ROOTS

- I.There are no perfect square factors other than I in the radicand.
- 2. The radicand is not a fraction.
- 3. The denominator does not contain a radical expression.

PULLING OUT PERFECT SQUARES

- I) Break down the number into its prime factors.
- 2) Remove any numbers that appear twice, write them once in front of the radical.
- Ex: Simplify $\sqrt{12}$
c. $\sqrt{8}$
d. $\sqrt{75}$
e. $\sqrt{20}$

7

PROPERTIES OF SQUARE ROOTS

- Product property: $\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$

$$
E x: \sqrt{6}=\sqrt{2} \cdot \sqrt{3}
$$

- Quotient property: $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

$$
\mathrm{Ex}: \sqrt{\frac{5}{2}}=\frac{\sqrt{5}}{\sqrt{2}}
$$

Simplify $\sqrt{3} \cdot \sqrt{6}$.

f. $\sqrt{5} \cdot \sqrt{10}$

$$
\text { g. } \sqrt{3} \cdot \sqrt{15}
$$

Simplify each expression.
$\frac{\sqrt{16}}{\sqrt{8}}$
(6) $\sqrt{\frac{9}{4}}$
i. $\frac{\sqrt{81}}{\sqrt{100}}$
j. $\sqrt{\frac{49}{64}}$

RADICALS IN THE DENOMINATOR

- When radicals are present in the denominator, rationalizing the denominator is necessary.

Ex: Simplify $\frac{\sqrt{3}}{\sqrt{5}}$.

Simplify $\frac{2}{\sqrt{3}}$.

k. $\frac{\sqrt{7}}{\sqrt{2}}$
I. $\frac{4}{\sqrt{3}}$

I3.2-45-45-90 TRIANGLES

Special Right Triangle

(2) If $\triangle P Q R$ is an isosceles right triangle and the measure of the hypotenuse is 12, find s. Write the answer in simplest form.

$\triangle A B C$ is an isosceles right triangle. Find s for each value of h.
a. 4
b. 5
c. $3 \sqrt{2}$

Find the missing measures. Write all radicals in simplest form.

I3.3-30-60-90 TRIANGLES

Special Right Triangle

18

(1) In $\triangle A B C, b=7$. Find a and c. Write in simplest form.

(2) In $\triangle A B C, c=18$. Find a and b. Write in simplest form.

(3) In $\triangle D E F, D E=12$. Find $E F$ and $D F$. Write in simplest form.

c. Refer to $\triangle D E F$ above. If $D E=8$, find $E F$ and $D F$.
a. Refer to $\triangle A B C$ above. If $b=8$, find a and c.
b. Refer to $\triangle A B C$ above. If $c=10$, find a and b.

13.4/5 TRIGONOMETRIC RATIOS

DEFINITIONS

- Trigonometry comes from Greek: trigon means triangles and metron means measure. Trigonometry involves the measure of triangles.
- A trigonometric ratio is a ratio of the lengths of two sides of a triangle. Trig ratios are constant for any given angle measure (due to similarity properties).

Labelling Triangles

TRIGONOMETRIC RATIOS

FINDING A RATIO

- I) Identify the angle you are working with.
- 2) Identify the angles opposite and adjacent sides.
-3) Write the ratio.

Express each ratio as a fraction and as a decimal to the nearest hundredth.

a. $\sin P$

b. $\cos P$
c. $\tan P$
d. $\sin Q$
e. $\cos Q$
f. $\boldsymbol{\operatorname { t a n }} Q$

FINDING MISSING MEASURES

- I) Identify the angle you have or are looking for.
- 2) Identify one side you have, and one you have or are looking for.
- 3) Determine the trigonometric ratio that relates all 3 items.

4) Write the ratio and solve it.

- Note: when looking for an angle, you must use the inverse to find the angle.
- Solving a right triangle means finding all angle and side measures.

Find x to the nearest hundredth.

3A.

3B.

Find the measures of each angle.

Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree.

