CHAPTER 12 SURFACE AREA AND VOLUME

12.1-SOLID FIGURES

Solids
All figures above are examples of solid figures or solids.
Solids with flat surface that are polygons are called polyhedrons or polyhedra.

Parts of a polyhedron

Name the faces, edges, and vertices of the polyhedron.

Name the faces, edges, and vertices of the polyhedron.

$$
\begin{array}{l|l|l}
\frac{\text { Faces }}{Q R P} & \left\lvert\, \begin{array}{l}
\text { Edges } \\
T U S \\
S P Q \\
Q R U
\end{array}\right. & \begin{array}{l}
\text { Vertices } \\
P, R, P, T, \\
P R U
\end{array} \\
\frac{U, S}{\frac{P R}{T U}} \\
\frac{\overline{S U}}{\frac{T S}{Q T}} \\
\frac{R U}{P S}
\end{array}
$$

Prisms and Pyramids

Prism

- Lateral faces are rectangular.
- Two bases.

Classification

Prisms and pyramids are classified according to the shape of their base.

triangular prism

rectangular prism

hexagonal prism

rectangular pyramid

pentagonal pyramid

\qquad pyramids

Special solids

Prisms and pyramids are classified according to the shape of their base.

cube
cube: all faces are squares. Type of prism.

Cylinders and cones \rightarrow non-polyhodra

Cylinders and cones are not polyhedral because they have curved lateral faces.

Cylinder

- Two bases.

Cone

- One base.

Composite solids

Composite solids are formed when several solids are combined to for a new solid.

12.2 - SURFACE AREA OF PRISMS AND CYLINDERS

2 bases

Oblique prisms and cylinders.

Solids are oblique when they are slanted. In this case, the height of the prisms and cylinder does not correspond to the edges.
Oblique prism:
Oblique cylinder:

Areactimitions loteral faces do
 Area definitions not include the base.

- Lateral area includes the area of all the lateral faces.
- Surface area includes the area of lateral faces and bases. Total area
For prisms and cylinders: -2 bases

$$
S A=L A+2 \cdot A_{\text {base }}
$$

For pyramids and cones: - 1 base

$$
S A=L A+A_{\text {base }}
$$

Area using nets
Find the lateral area and the surface area of each prism.
a.

Each face

2 bases 8 cm 4 lateral faces.
$8 \times 8=64 \mathrm{~cm}^{2}$
LA: $4 \times 64=256 \mathrm{~cm}^{2}$

Prisms and cylinders as layering of shapes

It can be more convenient to think of prisms and cylinders as a stack of shapes.

Using this method, we can use the formula:

$$
\begin{gathered}
L A=P_{\text {base }} \cdot h \\
S A=P_{\text {base }} \cdot h+2 A_{\text {base }}
\end{gathered}
$$

Area using stacking LA: $P_{\text {base }} \cdot h$
Find the lateral area and the surface area of each prism.
a.

$P_{\text {base: }} 8 \times 4$ 8 cm

8 cm

$S A: A_{\text {base }}=8 \times 8$
$S A=256+2 \times 64=384 \mathrm{~m}$
b.

Phase: $\begin{aligned} & 12 \mathrm{tt} \\ & 5+12+13=30 \mathrm{ft}\end{aligned}$
$\angle A=30 \times 6=180 \mathrm{ft}^{2}$
$2 A_{\text {base }}=\frac{12 \times 5}{2}=30$
$S A=180+2 \times 30=2400+t$

Find the lateral area and the surface area of the rectangular prism.

$$
\begin{aligned}
& P_{\text {base }}=2(8+3)=22 \mathrm{~cm}^{2} \\
& L A=22 \cdot 5=110 \mathrm{~cm}^{2} \\
& A_{\text {base }}=8 \times 3=24 \\
& S A=110+2.24=158 \mathrm{~cm}^{2}
\end{aligned}
$$

Find the lateral area and the surface area of the triangular prism.

$$
\begin{aligned}
& P_{\text {base }}=4+3+5=12 \mathrm{~cm} \\
& L_{A}=12 \cdot 13=156 \mathrm{~cm}^{2} \\
& S A=156+2 \cdot 6=168 \mathrm{~cm}^{2}
\end{aligned} \quad A_{\text {base }}=\frac{4 \cdot 3}{2}=6
$$

$$
25=c^{2} 18
$$

Prisms and cylinders as layering of shapes

$$
\begin{aligned}
& 2 \pi r \\
& L A \xlongequal[=]{\overbrace{\text { base }}} \cdot h=2 \pi r h \\
& S A=\underbrace{P_{\text {base }}} \cdot h+2 \underbrace{A_{\text {base }}} \\
& \text { circle } \\
& c=2 \pi r
\end{aligned}
$$

For cylinders, we can replace the perimeter
 and area by their formulas, which give us:

$$
S A \xlongequal[L A=2 \pi r \cdot h]{=2 \pi r h+2 \pi r^{2}}
$$

Find the lateral area and surface area of the cylinder to the nearest hundredth.

$$
\begin{aligned}
& L A=2 \pi r h=2 \pi(4)-11=276.46 \mathrm{ft}^{2} \\
& A_{\text {base }}=\pi r^{2}=\pi(4)^{2}=50.27 \mathrm{ft}^{2} \\
& S A=276.46+2.50 .27 \\
& S A=376.99 \mathrm{ft}^{2}
\end{aligned}
$$

Find the lateral area and the surface area of the cylinder to the nearest hundredth. $L A=2 \pi r h=2 \pi(5)(6)=188.50 \mathrm{~cm}^{2 h}=6$ $A_{\text {bases }}=\pi(5)^{2}=78.54 \mathrm{~cm}^{2}$

$$
S A=188 \cdot 50+2 \cdot 78 \cdot 54=345 \cdot 58
$$

12.3 - VOLUME OF PRISMS and cylinders

Definition: Volume

Volume is the amount of space contained in a solid. It is measured in cubic units.

Prisms and cylinders as layering of shapes

Formula:

$$
\begin{aligned}
& \text { will depend on the shape } \\
& \text { T of the base } \\
& V=A_{\text {base }} \cdot h
\end{aligned}
$$

For cylinders, you can replace the area by the formula for the area of a circle.

$$
V=\pi r^{2} \cdot h
$$

$$
A=\pi r^{2}
$$

Find the volume of the triangular prism.

$$
\begin{aligned}
& A_{\Delta}=\frac{b \times b}{2} \quad V=A_{\text {base }} \times h \\
& A_{\text {base }}=\frac{4 \times 4}{2}=8 \mathrm{ft}^{2} \quad h=12 \mathrm{ft} \\
& V=8 \times 12=96 \mathrm{ft}^{3}
\end{aligned}
$$

The base of the prism is a regular pentagon with sides of 4 centimeters and an apothem of 2.75 centimeters. Find the volume of the prism.

$$
\begin{gathered}
\text { Area of polygon }=\frac{n \times s \times a}{2} \\
n=\# \text { of sides } \quad n=5 \\
s=\text { side length } \quad s=4 \\
\text { a }=\text { opother } \quad a=2.75 \\
A_{b}=\frac{5 \times 4 \times 2.75}{2} \quad h=9 \\
A_{b}=27.5 \mathrm{~cm}^{2} \\
V=27.5 \times 9=247.5 \mathrm{~cm}^{3}
\end{gathered}
$$

Find the volume of the cylinder to the nearest hundredth.

$$
\begin{aligned}
& r=8 \mathrm{~cm} \\
& h=12.5 \mathrm{~cm} \\
& A=\pi r^{2} \\
& A_{b}=\pi(8)^{2}=201.06 \mathrm{~cm}^{2} \\
& V=201.06 \times 12.5=2513.25 \mathrm{~cm}^{3}
\end{aligned}
$$

Find the volume of the cylinder to the nearest hundredth.

$$
\begin{aligned}
& A_{b}=\pi r^{2}=\pi(13.25)^{2}=551.55 \mathrm{~cm}^{2} \\
& V=A_{b} \cdot h=551.55 \times 7.8=4333.29 \mathrm{~cm}^{3} \\
& 4302.06 \mathrm{~cm}^{3}
\end{aligned}
$$

this was a calculator typo,

12.4 - Surface area of PYRAMIDS AND CONES

- 1 base
- pyramids triangular lateral faces
- lateral faces meet at the apex.

Area using nets

Area using perimeter

For a cone, you can replace perimeter and area of circle by their formula.

$$
\begin{aligned}
& \angle A=\frac{2 \pi r \cdot l}{\mathbb{Z}}=\pi r l \\
& L A=\pi r l
\end{aligned}
$$

$$
S A=\pi r l+\pi r^{2}
$$

Find the lateral area and the surface Polygon: area of the regular hexagonal pyramid.

$$
\begin{aligned}
& P_{b}=6 \times 6=36 \mathrm{~cm} \\
& l=11 \mathrm{~cm} \\
& A_{b}=\frac{6 \times 6 \times 5.2}{2}=93.6 \mathrm{~cm}^{2} \\
& \delta=\text { side length } \\
& a=\frac{1}{2} \text { height. } \\
& 6 \mathrm{~cm} \\
& n=6 \quad 5.2 \mathrm{~cm} \\
& L A=P_{b} \cdot l=36 \times 11=396 \mathrm{~cm}^{2} P_{b}=\text { perimeter of base } \\
& l=\text { slant height } \\
& S A=396+93.6=489.6 \mathrm{~cm}^{2} A_{b}=\text { area of base } \\
& \angle A=\text { lateral area } \\
& \text { SA = surface area. }
\end{aligned}
$$

Find the lateral area and the surface area of each regular pyramid.

b.

$$
\begin{aligned}
& P_{b}=5 \times 4=20 \mathrm{~m} \\
& l=7 \mathrm{~m} \\
& A_{b}=\frac{5 \times 4 \times 2 \times 8}{2}=28 \mathrm{~m}^{2} \\
& \angle A=20 \times 7=140 \mathrm{~m}^{2} \\
& S A=140+28=168 \mathrm{~m}^{2}
\end{aligned}
$$

Find the lateral area and the surface area of the cone to the nearest hundredth.

$$
c=2 \pi r=\pi d
$$

$$
\begin{aligned}
& P_{b}=\pi(10)=31.42 \mathrm{ft} \quad A=\pi r^{2} \\
& l=13 \mathrm{ft} \\
& A_{b}=\pi(5)^{2}=78.54 \mathrm{ft}^{2} l^{2}=169 \\
& l^{2}=25+144 \\
& \angle A=31.42 \times 13=408.46=13 \\
& S A=408.48+78.54=487.02 \mathrm{ft}^{2}
\end{aligned}
$$

Find the lateral area and the surface area of each cone. Round to the nearest hundredth.

$$
\begin{aligned}
& c . \\
& P_{b}=2 \pi(4)=25.13 \mathrm{~m} \\
& l=9 \mathrm{~m} \\
& A_{=}=\pi(4)^{2}=50.27 \mathrm{~m}^{2} \\
& L A=25.13 \times 9=226.17 \mathrm{~m}^{2} \\
& S A=226.17+50.27= \\
& 276.44 \mathrm{~m}^{2}
\end{aligned}
$$

d.

$$
l^{2}=8^{2}+6^{2}
$$

$l^{2}=64+36$
$l^{2}=100$
$l=10$

$$
\begin{aligned}
& P_{b}=\pi(12)=37.70 \mathrm{in} \\
& l=10 \\
& A_{b}=\pi(6)^{2}=113.10 \mathrm{in}^{2} \\
& L A=37.70 \times 10=377 \mathrm{in}^{2} \\
& S A=377+113.1=490 \mathrm{in}^{2}
\end{aligned}
$$

12.5-VOLUME OF PYRAMIDS AND CONES

Volume of a pyramid demo

https://www.geogebra.org/m/jwf5y73q

Volume of pyramids and cones

$$
\begin{aligned}
& \text { Volume of prism }=A_{\text {base }} \cdot h \\
& \qquad V=\frac{1}{3} A_{\text {base }} \cdot h=\frac{A_{0}-h}{3}
\end{aligned}
$$

For a cone, replace with formula for area of a circle:

$$
V=\frac{1}{3} \pi r^{2} h
$$

Find the volume of the rectangular pyramid to the nearest hundredth.

$$
V=\frac{\Delta b \cdot h}{3}
$$

$$
\begin{aligned}
& A_{b}=8 \times 5=40 \mathrm{~cm}^{2} \\
& h=10 \mathrm{~cm} \\
& V=\frac{40 \times 10}{3}=133.33 \mathrm{~cm}^{3}
\end{aligned}
$$

Find the volume of each pyramid. Round to the nearest hundredth.

$$
\begin{aligned}
& \text { a. } V=\frac{A_{b} \cdot h}{3} \\
& A_{b}=10 \times 7=70 \mathrm{~cm}^{2} \\
& h=14 \mathrm{~cm} \\
& V=\frac{70 \times 14}{3}=326.66 \mathrm{~cm}^{3}
\end{aligned}
$$

b.

A of triangle $\frac{b \times h}{2}$
$A_{b}=\frac{6 \times 8}{2}=24 \mathrm{ft}^{2}$
$h=6 \mathrm{ft}$
$V=\frac{24 \times 6}{3}=48 \mathrm{~cm}^{3}$

Find the volume of the cone to the nearest hundredth. $\quad V=\frac{A_{b} \cdot h}{3} \quad A_{0}=\pi r^{2}$

$$
\begin{aligned}
& A_{b}=\pi(9)^{2}=254-47 \mathrm{in}^{2} \\
& h=12 \mathrm{in} \\
& V=\frac{254.47 \times 12}{3}=1017.88 \operatorname{in}^{3} 144=h^{2} \\
& 125=h^{2}+81 \\
& 12=h
\end{aligned}
$$

Find the volume of each cone to the nearest hundredth.

12.6 - SPHERES

Area and Volume Formulas

Spheres have no base, so there is only one area (no distinction between lateral and surface areas.)

Surface Area: $S A=4 \pi r^{2} \rightarrow$ only one measure for area.
Volume: $V=\frac{4}{3} \pi r^{3}$

Find the surface area and volume of the sphere.

$$
\begin{aligned}
& d=36 m \\
& r=36 \div 2=18 m \\
& S A=4 \pi(18)^{2}=4071.5 \mathrm{~m}^{2} \\
& V=\frac{4}{3} \pi(18)^{3}=24429.02 \mathrm{~m}^{3} S A=4 \pi r^{2} \\
& V=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

Find the surface area and volume of each sphere. Round to the nearest hundredth. $S A=4 \pi r^{2}$

b.

$d=26 \mathrm{~cm}$
a.
 $r=17 \quad V=\frac{4}{3} \pi r^{3}$
$S A=4 \pi(17)^{2}=3631.68 \mathrm{in}^{2}$
$V=\frac{4}{3} \pi(17)^{3}=20579.53$

$$
\begin{aligned}
& n^{3} \\
& S A=4 \pi(13)^{2}=2123.72 \mathrm{~cm}^{2} \\
& V=\frac{4}{3} \pi(13)^{3}=9202.77 \mathrm{~cm}^{3} \\
& 45
\end{aligned}
$$

Area and volume of composite solids

- To find the area or volume of composite solids, calculate the area or volume of the individual solids they are made up of and add them together.

The large external tank attached to the space shuttle at the time of launch contains the propellants for takeoff. It holds three tanks, including the liquid hydrogen tank. If the ends of the liquid hydrogen tank are hemispheres, Total volume $=310.34+1174.9$ find the volume of this tank to the nearest hundredth. $h=29.6-4.22-4.2$

$$
\begin{aligned}
& \text { Spheres } \\
& V=\frac{4}{3} \pi(4.2)^{3} \\
&=310.34 \mathrm{~m}^{3}
\end{aligned}
$$

diameter

$$
=1485.24 \mathrm{~m}^{3}
$$ of sphere

Liquid Hydrogen Tank

The large external tank attached to the space shuttle at the time of launch contains the propellants for takeoff. It holds three tanks, including the liquid hydrogen tank. If the ends of the liquid hydrogen tank are hemispheres, find the volume of this tank to the nearest hundredth.

12.7 - SIMILARITY OF SOLID FIGURES

Similar solids

Just like similar figures, similar solids have the same shape, but not the same size. All their measures are proportional.

Determine whether each pair of solids is similar.
(1)

similar.

Scale factor relationships

In similar solids, the areas and volumes are also proportional, but their scale factors are squares for area and cubed for volume.

For the similar cylinders, find the scale factor of the cylinder on the left to the cylinder on the right. Then find the ratios of the surface areas and the volumes.

(1)

$$
\text { lengths: } k=\frac{12}{9}=\frac{4}{3}
$$

area: $k^{2}=\left(\frac{4}{3}\right)^{2}=\frac{16}{9}$ 9 ft
volume: $k^{3}=\left(\frac{4}{3}\right)^{3}=\frac{64}{27}$

For each pair of similar solids, find the scale factor of the solid on the left to the solid on the right. Then find the ratios of the surface areas and the volumes.
C.

(1)

2
d.

(1)

$k=\frac{6}{12}=\frac{1}{2}$
$k^{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
$k^{3}=\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$
$k=\frac{6}{15}=\frac{2}{5}$
$k^{2}=\left(\frac{2}{5}\right)^{2}=\frac{4}{25}$
$k^{3}=\left(\frac{2}{5}\right)^{3}=\frac{8}{125}$

